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1.1 Constructing the Farey Diagram

Our goal is to use geometry to study numbers. Of the various kinds of numbers,

the simplest are integers, along with their ratios, the rational numbers. The large

figure below shows a very interesting diagram displaying rational numbers and certain

relations between them that we will be exploring. This diagram, along with several

variants of it that will be introduced later, is known as the Farey diagram. The origin

of the name will be explained when we get to one of these variants.
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What is shown here is not the whole diagram but only a finite part of it. The actual

diagram has infinitely many curvilinear triangles, getting smaller and smaller out near

the boundary circle. The diagram can be constructed by first inscribing the two big

triangles in the circle, then adding the four triangles that share an edge with the two

big triangles, then the eight triangles sharing an edge with these four, then sixteen

more triangles, and so on forever. With a little practice one can draw the diagram
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without lifting one’s pencil from the paper: First draw the outer circle starting at the

left or right side, then the diameter, then make the two large triangles, then the four

next-largest triangles, etc.

The vertices of all the triangles are labeled with fractions a/b , including the

fraction 1/0 for ∞ , according to the following scheme. In the upper half of the

diagram first label the vertices of the big triangles 0/1, 1/1, and 1/0 as shown. Then

by induction, if the labels at the two ends of the long edge

of a triangle are a/b and c/d , the label on the third vertex

of the triangle is a+c
b+d . This fraction is called the mediant

of a/b and c/d .

The labels in the lower half of the diagram follow the

same scheme, starting with the labels 0/1, −1/1, and

−1/0 on the large triangle. Using −1/0 instead of 1/0

as the label of the vertex at the far left means that we are regarding +∞ and −∞ as

the same. The labels in the lower half of the diagram are the negatives of those in the

upper half, and the labels in the left half are the reciprocals of those in the right half.

The labels occur in their proper order around the circle, increasing from −∞ to

+∞ as one goes around the circle in the counterclockwise direction. To see why this is

so, it suffices to look at the upper half of the diagram where all numbers are positive.

What we want to show is that the mediant a+c
b+d is always a number between a

b and c
d

(hence the term “mediant"). Thus we want to see that if a
b >

c
d then a

b >
a+c
b+d >

c
d .

Since we are dealing with positive numbers, the inequality a
b >

c
d is equivalent to

ad > bc , and a
b > a+c

b+d is equivalent to ab + ad > ab + bc which follows from

ad > bc . Similarly, a+c
b+d >

c
d is equivalent to ad + cd > bc + cd which also follows

from ad > bc .

We will show in the next section that the mediant rule for labeling vertices in the

diagram automatically produces labels that are fractions in lowest terms. It is not

immediately apparent why this should be so. For example, the mediant of 1/3 and

2/3 is 3/6, which is not in lowest terms, and the mediant of 2/7 and 3/8 is 5/15,

again not in lowest terms. Somehow cases like this don’t occur in the diagram.

Another non-obvious fact about the diagram is that all rational numbers occur

eventually as labels of vertices. This will be shown in the next section as well.
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Farey Series

We can build the set of rational numbers by starting with the integers and then

inserting in succession all the halves, thirds, fourths, fifths, sixths, and so on. Let us

look at what happens if we restrict to rational numbers between 0 and 1. Starting

with 0 and 1 we first insert 1/2, then 1/3 and 2/3, then 1/4 and 3/4, skipping 2/4

which we already have, then inserting 1/5, 2/5, 3/5, and 4/5, then 1/6 and 5/6, etc.

This process can be pictured as in the following diagram:
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The interesting thing to notice is:

Each time a new number is inserted, it forms the third vertex of a triangle whose

other two vertices are its two nearest neighbors among the numbers already listed,

and if these two neighbors are a/b and c/d then the new vertex is exactly the

mediant a+c
b+d .

The discovery of this curious phenomenon in the early 1800s was initially attributed

to a geologist and amateur mathematician named Farey, although it turned out that

he was not the first person to have noticed it. In spite of this confusion, the sequence

of fractions a/b between 0 and 1 with denominator less than or equal to a given

number n is usually called the nth Farey series Fn . For example, here is F7 :
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These numbers trace out the up-and-down path across the bottom of the figure above.

For the next Farey series F8 we would insert 1/8 between 0/1 and 1/7, 3/8 between

1/3 and 2/5, 5/8 between 3/5 and 2/3, and finally 7/8 between 6/7 and 1/1.
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There is a cleaner way to draw the preceding diagram using straight lines in a

square:
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One can construct this diagram in stages, as indicated in the sequence of figures

below. Start with a square together with its diagonals and a vertical line from their

intersection point down to the bottom edge of the square. Next, connect the resulting

midpoint of the lower edge of the square to the two upper corners of the square and

drop vertical lines down from the two new intersection points this produces. Now add

a W-shaped zigzag and drop verticals again. It should then be clear how to continue.

A nice feature of this construction is that if we start with a square whose sides have

length 1 and place this square so that its bottom edge lies along the x -axis with the

lower left corner of the square at the origin, then the construction assigns labels to
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the vertices along the bottom edge of the square that are exactly the x coordinates of

these points. Thus the vertex labeled 1/2 really is at the midpoint of the bottom edge

of the square, and the vertices labeled 1/3 and 2/3 really are 1/3 and 2/3 of the way

along this edge, and so forth. In order to verify this fact the key observation is the

following: For a vertical line segment in the diagram whose lower endpoint is at the

point
(a
b ,0

)

on the x -axis, the upper endpoint is at

the point
(a
b ,

1
b

)

. This is obviously true at the first

−−−
a

0b( ),

−−−
a

b −−−
1

b( ),

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a c

b d

1
( ),

−−−
c

d −−−
1

d( ),

−−−
c

0d( ),

+
+ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−b d+

stage of the construction, and it continues to hold

at each successive stage since for a quadrilateral

whose four vertices have coordinates as shown in

the figure at the right, the two diagonals intersect

at the point
( a+c
b+d ,

1
b+d

)

. For example, to verify that
( a+c
b+d ,

1
b+d

)

is on the line from
(a
b ,0

)

to
( c
d ,

1
d

)

it

suffices to show that the line segments from
(a
b ,0

)

to
( a+c
b+d ,

1
b+d

)

and from
( a+c
b+d ,

1
b+d

)

to
( c
d ,

1
d

)

have

the same slope. These slopes are

1/(b + d)− 0

(a+ c)/(b + d)− a/b
·
b(b + d)

b(b + d)
=

b

b(a+ c)− a(b + d)
=

b

bc − ad

and
1/d− 1/(b + d)

c/d− (a+ c)/(b + d)
·
d(b + d)

d(b + d)
=

b + d− d

c(b + d)− d(a+ c)
=

b

bc − ad

so they are equal. The same argument works for the other diagonal, just by inter-

changing a
b and c

d .

Going back to the square diagram, this fact that we have just shown implies that

the successive Farey series can be obtained by taking the vertices that lie above the

line y =
1
2 , then the vertices above y =

1
3 , then above y =

1
4 , and so on. Here we

are assuming the two properties of the Farey diagram that will be shown in the next

section, that all rational numbers occur eventually as labels on vertices, and that these

labels are always fractions in lowest terms.

In the square diagram, the most important thing for our purposes is the triangles,

not the vertical lines. We can get rid of all the vertical lines by shrinking each one to

its lower endpoint, converting each triangle into a curvilinear triangle with semicircles

as edges, as shown in the diagram below.



Chapter 1 The Farey Diagram 6

−−−
0

1 −−−

1

1
−−−
1

2−−−
1

3
−−−
2

3
−−−
1

4
−−−
1

5 −−−
2

5
−−−
3

5
−−−
3

4
−−−
4

5

This looks more like a portion of the Farey diagram we started with at the beginning of

the chapter, but with the outer boundary circle straightened into a line. The advantage

of the new version is that the labels on the vertices are exactly in their correct places

along the x -axis, so the vertex labeled a
b is exactly at the point a

b on the x -axis.

This diagram can be enlarged so as to include similar diagrams for fractions be-

tween all pairs of adjacent integers, not just 0 and 1, all along the x -axis:
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--------

We can also put in vertical lines at the integer points, extending upward to infinity.

These correspond to the edges having one endpoint at the vertex 1/0 in the original

Farey diagram.

All these diagrams are variants of the Farey diagram we started with at the begin-

ning of the chapter. Let us call the diagram we have just drawn the standard Farey

diagram and the one at the beginning of the chapter the circular Farey diagram. We

could also form a variant of the Farey diagram from copies of the square:
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Next we describe a variant of the circular Farey diagram that is closely related

to Pythagorean triples. Recall from Chapter 0 that rational points (x,y) on the unit

circle correspond to rational points p/q on the x -axis by means of lines through the

point (0,1) on the circle. In formulas, (x,y) = ( 2pq
p2+q2 ,

p2−q2

p2+q2 ) . Using this correspon-

dence, we can label the rational points on the circle by the corresponding rational

points on the x -axis and then construct a new Farey diagram in the circle by filling in

triangles by the mediant rule just as before.

The result is a version of the circular Farey diagram that is rotated by 90 degrees

to put 1/0 at the top of the circle, and there are also some perturbations of the

positions of the other vertices and the shapes of the triangles. The next figure shows

an enlargement of the new part of the diagram, with the vertices labeled by both the

fraction p/q and the coordinates (x,y) of the vertex:
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The construction we have described for the Farey diagram involves an inductive

process, where more and more triangles are added in succession. With a construction

like this it is not easy to tell by a simple calculation whether or not two given rational

numbers a/b and c/d are joined by an edge in the diagram. Fortunately there is such

a criterion:

Two rational numbers a/b and c/d are joined by an edge in the Farey diagram

exactly when the determinant ad−bc of the matrix
(
a c
b d

)

is ±1 . This applies also

when one of a/b or c/d is ±1/0 .

We will prove this in the next section. What it means in terms of the standard Farey

diagram is that if one were to start with the upper half of the xy -plane and insert
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vertical lines through all the integer points on the x -axis, and then insert semicircles

perpendicular to the x -axis joining each pair of rational points a/b and c/d such

that ad−bc = ±1, then no two of these vertical lines or semicircles would cross, and

they would divide the upper half of the plane into non-overlapping triangles. This

is really quite remarkable when you think about it, and it does not happen for other

values of the determinant besides ±1. For example, for determinant ±2 the edges

would be the dotted lines in the figure below. Here there are three lines crossing in

each triangle of the original Farey diagram, and these lines divide each triangle of the

Farey diagram into six smaller triangles.
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1.2 Continued Fractions

Here are two typical examples of continued fractions:

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

7 1

1
2

16
+

−−−

1
3

2
+

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

67

1

1
3

24

+

−−−−−−−−−−−−−−−−−−−−−−−−

1

1 +

2 +

−−−

1
1

4
+

To compute the value of a continued fraction one starts in the lower right corner and

works one’s way upward. For example in the continued fraction for 7
16 one starts with

3 + 1
2 =

7
2 , then taking 1 over this gives 2

7 , and adding the 2 to this gives 16
7 , and

finally 1 over this gives 7
16 .

Here is the general form of a continued fraction:

To write this in more compact form on a single line one can write it as

p

q
= a0 +

1
!↗a1

+ 1
!↗a2

+ · · · + 1
!↗an

For example:

7

16
= 1
!↗2+

1
!↗3+

1
!↗2

67

24
= 2+ 1

!↗1+
1
!↗3+

1
!↗1+

1
!↗4

To compute the continued fraction for a given rational number one starts in the

upper left corner and works one’s way downward, as the following example shows:

If one is good at mental arithmetic and the numbers aren’t too large, only the final

form of the answer needs to be written down: 67
24 = 2+ 1!↗1+

1!↗3+
1!↗1+

1!↗4 .
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This process is known as the Euclidean Algorithm. It consists of repeated divi-

sion, at each stage dividing the previous remainder into

the previous divisor. The procedure for 67/24 is shown

at the right. Note that the numbers in the shaded box are

the numbers ai in the continued fraction. These are the

=67 2 24 19+.

=24 1 19 5+.

=19 3 5 4+.

=5 1 4 1+.

=4 4 1 0+.
quotients of the successive divisions. They are sometimes

called the partial quotients of the original fraction.

One of the classical uses for the Euclidean algorithm is to find the greatest com-

mon divisor of two given numbers. If one applies the algorithm to two numbers

p and q , dividing the smaller into the larger, then the remainder into the first di-

visor, and so on, then the greatest common divisor of p

and q turns out to be the last nonzero remainder. For ex-

ample, starting with p = 72 and q = 201 the calculation

is shown at the right, and the last nonzero remainder is

3, which is the greatest common divisor of 72 and 201.

(In fact the fraction 201/72 equals 67/24, which explains

=201 2 72 57+.

=72 1 57 15+.

=57 3 15 12+.

=15 1 12 3+.

=12 4 3 0+.

why the successive quotients for this example are the same as in the preceding ex-

ample.) It is easy to see from the displayed equations why 3 has to be the greatest

common divisor of 72 and 201, since from the first equation it follows that any divi-

sor of 72 and 201 must also divide 57, then the second equation shows it must divide

15, the third equation then shows it must divide 12, and the fourth equation shows

it must divide 3, the last nonzero remainder. Conversely, if a number divides the last

nonzero remainder 3, then the last equation shows it must also divide the 12, and

the next-to-last equation then shows it must divide 15, and so on until we conclude

that it divides all the numbers not in the shaded rectangle, including the original two

numbers 72 and 201. The same reasoning applies in general.

A more obvious way to try to compute the greatest common divisor of two num-

bers would be to factor each of them into a product of primes, then look to see which

primes occurred as factors of both, and to what power. But to factor a large number

into its prime factors is a very laborious and time-consuming process. For example,

even a large computer would have a hard time factoring a number of a hundred digits

into primes, so it would not be feasible to find the greatest common divisor of a pair

of hundred-digit numbers this way. However, the computer would have no trouble at

all applying the Euclidean algorithm to find their greatest common divisor.
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Having seen what continued fractions are, let us now see what they have to do with

the Farey diagram. Some examples will illustrate this best, so let us first look at the

continued fraction for 7/16 again. This has 2,3,2 as its sequence of partial quotients.

We use these three numbers to build a strip of three large triangles subdivided into

2, 3, and 2 smaller triangles, from left to right:

−−−

1

0

−−−
0

1

−−−

1

1 −−−
1

2

2

−−−
4

9
−−−

7

16

−−−
1

3

3

−−−
2

2

5
−−−
3

7

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

7 1

1
2

16
+

−−−

1
3

2
+

We can think of the diagram as being formed from three “fans", where the first fan is

made from the first 2 small triangles, the second fan from the next 3 small triangles,

and the third fan from the last 2 small triangles. Now we begin labeling the vertices

of this strip. On the left edge we start with the labels 1/0 and 0/1. Then we use the

mediant rule for computing the third label of each triangle in succession as we move

from left to right in the strip. Thus we insert, in order, the labels 1/1, 1/2, 1/3, 2/5,

3/7, 4/9, and finally 7/16.

Was it just an accident that the final label was the fraction 7/16 that we started

with, or does this always happen? Doing more examples should help us decide. Here

is a second example:
−−−

1

0

−−−
0

1

−−−

1

1
−−−

1

2
−−−

3

10
−−−

7

24
−−−
1

3

2

−−−

5

17
−−−

9

31

3

−−−
1

4

4
−−−
2

7

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

9 1

1
3

31
+

−−−

1
2

4
+

Again the final vertex on the right has the same label as the fraction we started with.

The reader is encouraged to try more examples to make sure we are not rigging things

to get a favorable outcome by only choosing examples that work.

In fact this always works for fractions p/q between 0 and 1. For fractions larger

than 1 the procedure works if we modify it by replacing the label 0/1 with the initial

integer a0/1 in the continued fraction a0+
1!↗a1

+ 1!↗a2
+· · ·+ 1!↗an . This is illustrated

by the 67/24 example:
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−−−

1

0

−−−
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1

1

−−−
3

1

1

−−−
14

5

−−−
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−−−
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−−−

53
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−−−
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−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

67

1

1
3

24

+

−−−−−−−−−−−−−−−−−−−−−−−−

1

1 +

2 +

−−−

1
1

4
+

For comparison, here is the corresponding strip for the reciprocal, 24/67:

−−−

0

1

−−−

1

0 −−−

1

1
−−−
1

4

2

1

−−−
1

3

1

−−−
5

14

−−−

24

67
−−−

14

39
−−−

19

53
−−−
2

5
−−−
3

8
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−−−
4

11
−−−
9

25

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

24

1

1
3

67

+

−−−−−−−−−−−−−−−−−−−−−−−−

1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1

1 +

2 +

−−−

1
1

4
+

Now let us see how all this relates to the Farey diagram. Since the rule for labeling

vertices in the triangles along the horizontal strip for a fraction p/q is the mediant

rule, each of the triangles in the strip is a triangle in the Farey diagram, somewhat

distorted in shape, and the strip of triangles can be regarded as a sequence of adjacent

triangles in the diagram. Here is what this looks like for the fraction 7/16 in the

circular Farey diagram, slightly distorted for the sake of visual clarity:

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

7 1

1
2

3

16
+

−−−

1

0

2

−−−

1

2
−−−

3

7

−−−

1

0 −−−
0

1

−−−

1

1

−−−
1

2
−−−
4

9
−−−

7

16

−−−
1

3

−−−
2

5

−−−
3

7+

Convergents: , , −−−

7

 16
,

In the strip of triangles for a fraction p/q there is a zigzag path from 1/0 to p/q

that we have indicated by the heavily shaded edges. The vertices that this zigzag path

passes through have a special significance. They are the fractions that occur as the

values of successively larger initial portions of the continued fraction, as illustrated

in the following example:
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−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

67

1

1
3

24

+

−−−−−−−−−−−−−−−−−−−−−−−−

1

1 +

2

2

3

+

−−−

1
1

4
+

4
11/

5
14/

24
67/

These fractions are called the convergents for the given fraction. Thus the convergents

for 67/24 are 2, 3, 11/4, 14/5, and 67/24 itself.

From the preceding examples one can see that each successive vertex label pi/qi
along the zigzag path for a continued fraction

p
q = a0 +

1!↗a1
+ 1!↗a2

+ · · · + 1!↗an is

computed in terms of the two preceding vertex labels according to the rule

pi
qi
=
aipi−1 + pi−2

aiqi−1 + qi−2

This is because the mediant rule is being applied ai times, ‘adding’ pi−1/qi−1 to the

previously obtained fraction each time until the next label pi/qi is obtained.

�

�

1

�

�

It is interesting to see what the zigzag paths corresponding to continued fractions

look like in the standard Farey diagram. The next figure shows the simple example

of the continued fraction for 3/8. We can see here that the five triangles of the

strip correspond to the four curvilinear triangles lying directly above 3/8 in the Farey

diagram, plus the fifth ‘triangle’ extending upward to infinity, bounded on the left and

right by the vertical lines above 0/1 and 1/1, and bounded below by the semicircle

from 0/1 to 1/1.
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This example is typical of the general case, where the zigzag path for a continued

fraction
p
q = a0+

1!↗a1
+1!↗a2

+· · ·+1!↗an becomes a ‘pinball path’ in the standard Farey

diagam, starting down the vertical line from 1/0 to a0/1, then turning left across a1

triangles, then right across a2 triangles, then left across a3 triangles, continuing to

alternate left and right turns until reaching the final vertex p/q . Two consequences

of this are:

(1) The convergents are alternately smaller than and greater than p/q .

(2) The triangles that form the strip of triangles for p/q are exactly the triangles in

the Farey diagram that lie directly above the point p/q on the x -axis.

Here is a general statement describing the relationship between continued frac-

tions and the Farey diagram that we have observed in all our examples so far:

Theorem. The convergents for the continued fraction
p
q = a0+

1!↗a1
+ 1!↗a2

+· · ·+ 1!↗an
are the vertices along a zigzag path consisting of a finite sequence of edges in the Farey

diagram, starting at 1/0 and ending at p/q . The path starts along the edge from

1/0 to a0/1 , then turns left across a fan of a1 triangles, then right across a fan of a2

triangles, etc., finally ending at p/q .

In particular, since every positive rational number has a continued fraction ex-

pansion, we see that every positive rational number occurs eventually as the label of

some vertex in the positive half of the diagram. All negative rational numbers then

occur as labels in the negative half.
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Proof of the Theorem: The continued fraction
p
q = a0 +

1!↗a1
+ 1!↗a2

+ · · · + 1!↗an deter-

mines a strip of triangles:

�

�

�

�

We will show that the label pn/qn on the final vertex in this strip is equal to p/q , the

value of the continued fraction. Replacing n by i , we conclude that this holds also

for each initial seqment a0+
1!↗a1

+ 1!↗a2
+· · ·+ 1!↗ai of the continued fraction. This is

just saying that the vertices pi/qi along the strip are the convergents to p/q , which

is what the theorem claims.

To prove that pn/qn = p/q we will use 2× 2 matrices. Consider the product

P =

(

1 a0

0 1

)(

0 1
1 a1

)(

0 1
1 a2

)

· · ·

(

0 1
1 an

)

We can multiply this product out starting either from the left or from the right. Sup-

pose first that we multiply starting at the left. The initial matrix is

(

1 a0

0 1

)

and we

can view the two columns of this matrix as the two fractions 1/0 and a0/1 labeling

the left edge of the strip of triangles. When we multiply this matrix by the next matrix

we get
(

1 a0

0 1

)(

0 1
1 a1

)

=

(

a0 1+ a0a1

1 a1

)

=

(

p0 p1

q0 q1

)

The two columns here give the fractions at the ends of the second edge of the zigzag

path. The same thing happens for subsequent matrix multiplications, as multiplying

by the next matrix in the product takes the matrix corresponding to one edge of the

zigzag path to the matrix corresponding to the next edge:

(

pi−2 pi−1

qi−2 qi−1

)(

0 1
1 ai

)

=

(

pi−1 pi−2 + aipi−1

qi−1 qi−2 + aiqi−1

)

=

(

pi−1 pi
qi−1 qi

)

In the end, when all the matrices have been multiplied, we obtain the matrix corre-

sponding to the last edge in the strip from pn−1/qn−1 to pn/qn . Thus the second

column of the product P is pn/qn , and what remains is to show that this equals the

value p/q of the continued fraction a0 +
1!↗a1

+ 1!↗a2
+ · · · + 1!↗an .
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The value of the continued fraction a0 +
1!↗a1

+ 1!↗a2
+ · · · + 1!↗an is computed by

working from right to left. If we let ri/si be the value of the tail 1!↗ai+1!↗ai+1
+· · ·+1!↗an

of the continued fraction, then rn/sn = 1/an and we have

ri
si
=

1

ai +
ri+1

si+1

=
si+1

aisi+1 + ri+1

and finally
p

q
= a0 +

r1

s1
=
a0s1 + r1

s1

In terms of matrices this implies that we have
(

rn
sn

)

=

(

1
an

)

,

(

0 1
1 ai

)(

ri+1

si+1

)

=

(

si+1

ri+1 + aisi+1

)

=

(

ri
si

)

and

(

1 a0

0 1

)(

r1

s1

)

=

(

r1 + a0s1
s1

)

=

(

p
q

)

This means that when we multiply out the product P starting from the right, then the

second columns will be successively

(

rn
sn

)

,

(

rn−1

sn−1

)

, · · · ,

(

r1

s1

)

and finally

(

p
q

)

.

We already showed this second column is

(

pn
qn

)

, so p/q = pn/qn and the proof is

complete. %⊓

An interesting fact that can be deduced from the preceding proof is that for a

continued fraction 1!↗a1
+ 1!↗a2

+ · · ·+ 1!↗an with no initial integer a0 , if we reverse the

order of the numbers ai , this leaves the denominator unchanged. For example

1
!↗2+

1
!↗3+

1
!↗4 =

13

30
and 1

!↗4+
1
!↗3+

1
!↗2 =

7

30

To see why this must always be true we use the operation of transposing a matrix to in-

terchange its rows and columns. For a 2×2 matrix this just amounts to interchanging

the upper-right and lower-left entries:
(

a c
b d

)T

=

(

a b
c d

)

Transposing a product of matrices reverses the order of the factors: (AB)T = BTAT ,

as can be checked by direct calculation. In the product
(

0 1
1 a1

)(

0 1
1 a2

)

· · ·

(

0 1
1 an

)

=

(

pn−1 pn
qn−1 qn

)

the individual matrices on the left side of the equation are symmetric with respect to

transposition, so the transpose of the product is obtained by just reversing the order

of the factors:
(

0 1
1 an

)(

0 1
1 an−1

)

· · ·

(

0 1
1 a1

)

=

(

pn−1 qn−1

pn qn

)
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Thus the denominator qn is unchanged, as claimed.

There is also a fairly simple relationship between the numerators. In the example

of 13/30 and 7/30 we see that the product of the numerators, 91, is congruent to

1 modulo the denominator. In the general case the product of the numerators is

pnqn−1 and this is congruent to (−1)n+1 modulo the denominator qn . To verify this,

we note that the determinant of each factor

(

0 1
1 ai

)

is −1 so since the determinant

of a product is the product of the determinants, we have pn−1qn − pnqn−1 = (−1)n ,

which says that pnqn−1 is congruent to (−1)n+1 modulo qn .

Determinants Determine Edges

We constructed the Farey diagram by an inductive procedure, inserting successive

edges according to the mediant rule, but there is another rule that can be used to

characterize the edges in the diagram:

Theorem. In the Farey diagram, two vertices labeled a/b and c/d are joined by an

edge if and only if the determinant ad− bc of the matrix
(
a c
b d

)

is equal to ±1 .

Proof : First we show that for an arbitrary edge in the di-

agram joining a/b to c/d , the associated matrix
(
a c
b d

)

has determinant ±1. This is obviously true for the edges

in the two largest triangles in the circular version of the

diagram. For the smaller triangles we proceed by induc-

tion. The figure at the right shows the three matrices cor-

responding to the edges of one of these smaller triangles.

By induction we assume we know that ad−bc = ±1 for

the long edge of the triangle. Then the determinant con-

dition holds also for the two shorter edges of the triangle since a(b+d)−b(a+ c) =

ad− bc and (a+ c)d− (b + d)c = ad− bc .

Before proving the converse let us pause to apply what we have shown so far to

deduce a basic fact about the Farey diagram that was mentioned but not proved when

we first constructed the diagram:

Corollary. The mediant rule for labeling the vertices in the Farey diagram always

produces labels a/b that are fractions in lowest terms.

Proof : Consider an edge joining a vertex labeled a/b to some other vertex labeled

c/d . By the preceding proposition we know that ad−bc = ±1. This equation implies

that a and b can have no common divisor greater than 1 since any common divisor of
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a and b must divide the products ad and bc , hence also the difference ad−bc = ±1,

but the only divisors of ±1 are ±1. %⊓

Now we return to proving the converse half of the theorem, which says that there

is an edge joining a/b to c/d whenever ad−bc = ±1. To do this we will examine how

all the edges emanating from a fixed vertex a/b are related. To begin, if a/b = 0/1

then the matrices

(

0 c
1 d

)

with determinant ±1 are the matrices

(

0 ±1
1 d

)

, and

these correspond exactly to the edges in the diagram from 0/1 to ±1/d . There is

a similar exact correspondence for the edges from 1/0. For the other vertices a/b ,

the example a/b = 5/8 is shown in the left half of the figure below. The first edges

drawn to this vertex come from 2/3 and 3/5, and after this all the other edges from

5/8 are drawn in turn. As one can see, they are all obtained by adding (5,8) to (2,3)

or (3,5) repeatedly. If we choose any one of these edges from 5/8, say the edge to

2/3 for example, then the edges from 5/8 have their other endpoints at the fractions

(2 + 5k)/(3 + 8k) as k ranges over all integers, with positive values of k giving the

edges on the upper side of the edge to 2/3 and negative values of k giving the edges

on the lower side of the edge to 2/3.

The same thing happens for an arbitrary value of a/b as shown in the right half of

the figure, where a/b initially arises as the mediant of c/d and e/f . In this case if

we choose the edge to c/d as the starting edge, then the other edges go from a/b to

(c + ka)/(d+ kb) . In particular, when k = −1 we get the edge to (c − a)/(d− b) =

(a− c)/(b − d) = e/f .

To finish the argument we need to know how the various matrices
(
a x
b y

)

of deter-

minant ay −bx = ±1 having the same first column are related. This can be deduced

from the following result about integer solutions of linear equations with integer co-

efficients:
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Lemma. Suppose a and b are integers with no common divisor. If one solution of

ay − bx = n is (x,y) = (c, d) , then the general solution is (x,y) = (c +ka,d+ kb)

for k an arbitrary integer.

The proof will use the same basic argument as is used in linear algebra to show

that the general solution of a system of nonhomogeneous linear equations is obtained

from any particular solution by adding the general solution of the associated system

of homogeneous equations.

Proof : One solution (x,y) = (c, d) of ay−bx = n is given. For an arbitrary solution

(x,y) we look at the difference (x0, y0) = (x−c,y−d) . This satisfies ay0−bx0 = 0,

or in other words, ay0 = bx0 . Since a and b have no common divisors, the equation

ay0 = bx0 implies that x0 must be a multiple of a and y0 must be a multiple of

b , in fact the same multiple in both cases so that the equation becomes a(kb) =

b(ka) . Thus we have (x0, y0) = (ka, kb) for some integer k . Thus every solution of

ay −bx = n has the form (x,y) = (c +x0, d+y0) = (c +ka,d+kb) , and it is clear

that these formulas for x and y give solutions for all values of k . %⊓

Now we can easily finish the proof of the theorem. The lemma in the cases n = ±1

implies that the edges in the Farey diagram with a/b at one endpoint account for all

matrices
(
a x
b y

)

of determinant ay − bx = ±1. %⊓

There is some ambiguity in the correspondence between edges of the Farey di-

agram and matrices
(
a c
b d

)

of determinant ±1. For one thing, either column of the

matrix can be multiplied by −1, changing the sign of the determinant without chang-

ing the value of the fractions a/b and c/d . This ambiguity can be eliminated by

choosing all of a , b , c , and d to be positive for edges in the upper half of the circular

Farey diagram, and choosing just the numerators a and c to be negative for edges in

the lower half of the diagram. The only other ambiguity is that both
(
a c
b d

)

and
(
c a
d b

)

correspond to the same edge. This ambiguity can be eliminated by orienting the edges

by placing an arrowhead on each edge pointing from the vertex corresponding to the

first column of the matrix to the vertex corresponding to the second column. Chang-

ing the orientation of an edge switches the two columns of the matrix, which changes

the sign of the determinant.

The identity matrix
(

1 0
0 1

)

has determinant +1 and corresponds to the edge from

1/0 to 0/1 oriented from left to right in the circular diagram. We can use this ori-

entation to give orientations to all other edges when we build the diagram using the

mediant rule. In the upper half of the diagram this



Chapter 1 The Farey Diagram 21

makes all edges be oriented toward the right, or in

other words from a/b to c/d with a/b > c/d . With

this orientation, all the corresponding matrices have

determinant +1 since
(

1 0
0 1

)

has determinant +1 and

we have seen that the determinant doesn’t change

when we add new edges by the mediant rule. When

we use the mediant rule to construct the lower half of the diagram we have to start

with −1/0 instead of 1/0. This means that we are starting with the matrix
(
−1 0
0 1

)

instead of
(

1 0
0 1

)

. Since the determinant of
(
−1 0
0 1

)

is −1, this means that the edges

in the lower half of the diagram, when oriented toward the right as in the upper half,

correspond to matrices of determinant −1.

The Diophantine Equation ax+by=n

The Euclidean algorithm and continued fractions can be used to compute all the

integer solutions of a linear equation ax + by = n where a , b , and n are given

integers. We can assume neither a nor b is zero, otherwise the equation is rather

trivial. Changing the signs of x or y if necessary, we can rewrite the equation in the

form ax − by = n where a and b are both positive.

If a and b have greatest common divisor d > 1, then since d divides a and b

it must divide ax − by , so d must divide n if the equation is to have any solutions

at all. If d does divide n we can divide both sides of the equation by d to get a new

equation of the same type as the original one and having the same solutions, but with

the new coefficients a and b having no common divisors. For example, the equation

6x−15y = 21 reduces in this way to the equation 2x−5y = 7. Thus we can assume

from now on that a and b have no common divisors.

The Lemma from a page or two back shows how to find the general solution of

ax−by = n once we have found one particular solution. To find a particular solution

it suffices to do the case n = 1 since if we have a solution of ax − by = 1, we can

multiply x and y by n to get a solution of ax−by = n . For small values of a and b

a solution of ax−by = 1 can be found more or less by inspection since the equation

ax−by = 1 says that we have multiples of a and b that differ by 1. For example, for

the equation 2x− 5y = 1 the smallest multiples of 2 and 5 that differ by 1 are 2 · 3

and 5 · 1, so a solution of 2x − 5y = 1 is (x,y) = (3,1) . A solution of 2x − 5y = 7

is then (x,y) = (21,7) . By the earlier Lemma, the general solution of 2x − 5y = 7

is (x,y) = (21 + 5k,7+ 2k) for arbitrary integers k . The smallest positive solution

is (6,1) , obtained by setting k = −3. This means we could also write the general
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solution as (6+ 5k,1+ 2k) .

Solutions of ax − by = 1 always exist when a and b have no common divisors,

and a way to find one is to find an edge in the Farey diagram with a/b at one end

of the edge. This can be done by using the Euclidean algorithm to compute the strip

of triangles from 1/0 to a/b . As an example, let us solve 67x − 24y = 1. We

already computed the strip of triangles for 67/24 earlier in this section. The vertex

preceding 67/24 in the zigzag path is 14/5 and this vertex lies above 67/24 so we

have 14/5 > 67/24 and hence the matrix
(

14 67
5 24

)

has determinant +1. Thus one

solution of 67x−24y = 1 is (x,y) = (−5,−14) and the general solution is (x,y) =

(−5+ 24k,−14+ 67k) . We could also use the edge from 53/19 to 67/24, so
(

67 53
24 19

)

has determinant +1, yielding another formula for the general solution (19+24k,53+

67k) .

From a geometric point of view, finding the integer solutions of ax + by = n is

finding the points on the line ax + by = n in the xy -plane having both coordinates

integers. The points in the plane having both coordinates integers form a square grid

called the integer lattice. Thus we wish to see which points in the integer lattice lie on

the line ax + by = n . This equation can be written in the form y =mx + b where

slope m and y -intercept b are both rational. Conversely, an equation y =mx + b

with m and b rational can be written as an equation ax + by = n with a , b , and n

integers by multiplying through by a common denominator of m and b . Sometimes

the equation ax + by = n has no integer solutions, as we have seen, namely when

n is not a multiple of the greatest common divisor of a and b , for example the

equation 2x+2y = 1. In these cases the line ax+by = n passes through no integer

lattice points. In the opposite case that there does exist an integer solution, there are

infinitely many, and they correspond to integer lattice points spaced at equal intervals

along the line.
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Infinite Continued Fractions

We have seen that all rational numbers can be represented as continued fractions

a0 +
1!↗a1

+ 1!↗a2
+ · · · + 1!↗an , but what about irrational numbers? It turns out that

these can be represented as infinite continued fractions a0 +
1!↗a1

+ 1!↗a2
+ 1!↗a3

+ · · · .

A simple example is 1!↗1+
1!↗1+

1!↗1+ · · · , or in its expanded form:

−−−−−−−−−−−−−−−−−

1

+

−−−−−−−−−−−−−−−−−−−−−−−−

1

1

1
−−−−−−−−−−

1

+1

+

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1

1 +

. . .

The corresponding strip of triangles is infinite:

−−−

0

1

−−−

1

0
−−−
1

1

−−−
1

2
−−−

8

13

−−−

34

55
−−−

13

21

−−−

21

34
−−−

55

89

−−−
2

3
−−−
5

8

−−−
3

5

Notice that these fractions after 1/0 are the successive ratios of the famous Fibonacci

sequence 0,1,1,2,3,5,8,13,21, · · · where each number is the sum of its two prede-

cessors. The sequence of convergents is thus 0/1,1/1,1/2,2/3,3/5,5/8,8/13, · · ·,

the vertices along the zigzag path. The way

this zigzag path looks in the standard Farey

diagram is shown in the figure at the right.

What happens when we follow this path far-

ther and farther? The path consists of an

infinite sequence of semicircles, each one

shorter than the preceding one and sharing

a common endpoint. The left endpoints of

the semicircles form an increasing sequence

of numbers which have to be approaching a certain limiting value x . We know x has

to be finite since it is certainly less than each of the right-hand endpoints of the semi-

circles, the convergents 1/1,2/3,5/8, · · ·. Similarly the right endpoints of the semi-

circles form a decreasing sequence of numbers approaching a limiting value y greater

than each of the left-hand endpoints 0/1,1/2,3/5, · · ·. Obviously x ≤ y . Is it pos-
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sible that x is not equal to y ? If this happened, the infinite sequence of semicircles

would be approaching the semicircle from x to y . Above this semicircle there would

then be an infinite number of semicircles, all the semicircles in the infinite sequence.

Between x and y there would have to be a rational numbers p/q (between any two

real numbers there is always a rational number), so above this rational number there

would be an infinite number of semicircles, hence an infinite number of triangles in

the Farey diagram. But we know that there are only finitely many triangles above any

rational number p/q , namely the triangles that appear in the strip for the continued

fraction for p/q . This contradiction shows that x has to be equal to y . Thus the

sequence of convergents along the edges of the infinite strip of triangles converges to

a unique real number x . (This is why the convergents are called convergents.)

This argument works for arbitrary infinite continued fractions, so we have shown

the following general result:

Proposition. For every infinite continued fraction a0 +
1!↗a1

+ 1!↗a2
+ 1!↗a3

+ · · · the

convergents converge to a unique limit.

This limit is by definition the value of the infinite continued fraction. There is a

simple method for computing the value in the example involving Fibonacci numbers.

We begin by setting

x = 1
!↗1+

1
!↗1+

1
!↗1+ · · ·

Then if we take the reciprocals of both sides of this equation we get

1

x
= 1+ 1

!↗1+
1
!↗1+

1
!↗1+ · · ·

The right side of this equation is just 1+ x , so we can easily solve for x :

1

x
= 1+ x

1 = x + x2

x2 + x − 1 = 0

x =
−1±

√

5

2

We know x is positive, so this rules out the negative root and we are left with the final

value x = (−1 +
√

5)/2. This number, approximately .618, goes by the name of the

golden ratio. It has many interesting properties.

Proposition. Every irrational number has an expression as an infinite continued frac-

tion, and this continued fraction is unique.
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Proof : In the Farey diagram consider the vertical line L going upward from a given

irrational number x on the x -axis. The lower endpoint of L is not a vertex of the

Farey diagram since x is irrational. Thus as we move downward along L we cross a

sequence of triangles, entering each triangle by crossing its upper edge and exiting

the triangle by crossing one of its two lower edges. When we exit one triangle we

are entering another, the one just below it, so the sequence of triangles and edges

we cross must be infinite. The left and right endpoints of the edges in the sequence

must be approaching the single point x by the argument we gave in the preceding

proposition, so the edges themselves are approaching x . Thus the triangles in the

sequence form a single infinite strip consisting of an infinite sequence of fans with

their pivot vertices on alternate sides of the strip. The zigzag path along this strip

gives a continued fraction for x .

For the uniqueness, we have seen that an infinite continued fraction for x cor-

responds to a zigzag path in the infinite strip of triangles lying above x . This set

of triangles is unique so the strip is unique, and there is only one path in this strip

that starts at 1/0 and then does left and right turns alternately, starting with a left

turn. The initial turn must be to the left because the first two convergents are a0 and

a0 +
1
a1

, with a0 +
1
a1
> a0 since a1 > 0. After the path traverses the first edge, no

subsequent edge of the path can go along the border of the strip since this would

entail two successive left turns or two successive right turns. %⊓

The arguments we have just given can be used to prove a fact about the standard

Farey diagram that we have been taking more or less for granted. This is the fact that

the triangles in the diagram completely cover the upper halfplane. In other words,

every point (x,y) with y > 0 lies either in the interior of some triangle or on the

common edge between two triangles. To see why, consider the vertical line L in the

upper halfplane through the given point (x,y) . If x is an integer then (x,y) is on

one of the vertical edges of the diagram. Thus we can assume x is not an integer

and hence L is not one of the vertical edges of the diagram. The line L will then be

contained in the strip of triangles corresponding to the continued fraction for x . This

is a finite strip if x is rational and an infinite strip if x is irrational. In either case

the point (x,y) , being in L , will be in one of the triangles of the strip or on an edge

separating two triangles in the strip. This proves what we wanted to prove.

To compute the infinite continued fraction a0+
1!↗a1

+ 1!↗a2
+ 1!↗a3

+· · · for a given

irrational number x we can follow the same procedure as for rational numbers, but it

doesn’t terminate after a finite number of steps. Recall the original example that we
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did:

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

67

1

1
3

24

+3 +

−−−−−−−−−−−−−−−−−−−−−−−−

1

1

−−−−

19

24

+

−−−−−−−−

1
1 +

1 +
2 + = −−−−

1

1924
2 +

−−−

1
1

4
+

−−−−−

1

/

519/

= −−−−−−−−

1

195
2 +

/
= −−−−−−−−

1
2 +

−−−−−−−−

1
1 +

54/
45/

= −−−−−−−−−−−−

1
2 +

3 +
−−−−−−−−

1
1 +

= −−−−−−−−−−−−

1
2 + = 2 +

The sequence of steps is the following:

(1) Write x = a0 + r1 where a0 is an integer and 0 ≤ r1 < 1

(2) Write 1/r1 = a1 + r2 where a1 is an integer and 0 ≤ r2 < 1

(3) Write 1/r2 = a2 + r3 where a2 is an integer and 0 ≤ r3 < 1

and so on, repeatedly. Thus one first finds the largest integer a0 ≤ x , with r1 the

‘remainder’, then one inverts r1 and finds the greatest integer a1 ≤ 1/r1 , with r2 the

remainder, etc.

Here is how this works for x =
√

2:

(1)
√

2 = 1+(
√

2−1) where a0 = 1 since
√

2 is between 1 and 2. Before going on to

step (2) we have to compute 1
r1
=

1
√

2−1
. Multiplying numerator and denominator

by
√

2+ 1 gives 1
√

2−1
=

1
√

2−1
·
√

2+1
√

2+1
=
√

2+ 1. This is the number we use in the

next step.

(2)
√

2+ 1 = 2+ (
√

2− 1) since
√

2+ 1 is between 2 and 3.

Notice that something unexpected has happened: The remainder r2 =
√

2−1 is exactly

the same as the previous remainder r1 . There is then no need to do the calculation

of 1
r2
=

1
√

2−1
since we know it will have to be

√

2+ 1. This means that the next step

(3) will be exactly the same as step (2), and the same will be true for all subsequent

steps. Hence we get the continued fraction

√

2 = 1+ 1
!↗2+

1
!↗2+

1
!↗2+ · · ·

We can check this calculation by finding the value of the continued fraction in the same

way that we did earlier for 1!↗1+
1!↗1+

1!↗1+ · · · . First we set x = 1!↗2+
1!↗2+

1!↗2+ · · · .

Taking reciprocals gives 1/x = 2 + 1!↗2 +
1!↗2 +

1!↗2 + · · · = 2 + x . This leads to the

quadratic equation x2+2x−1 = 0, which has roots x = −1±
√

2. Since x is positive

we can discard the negative root. Thus we have −1+
√

2 = 1!↗2+
1!↗2+

1!↗2+· · · . Adding

1 to both sides of this equation gives the formula for
√

2 as a continued fraction.
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We can get good rational approximations to
√

2 by computing the convergents

in its continued fraction 1 + 1!↗2 +
1!↗2 +

1!↗2 + · · · . It’s a little easier to compute the

convergents in 2 + 1!↗2 +
1!↗2 +

1!↗2 + · · · = 1 +
√

2 and then subtract 1 from each of

these. For 2+ 1!↗2+
1!↗2+

1!↗2+ · · · there is a nice pattern to the convergents:

2

1
,

5

2
,

12

5
,

29

12
,

70

29
,

169

70
,

408

169
,

985

408
, · · ·

Notice that the sequence of numbers 1,2,5,12,29,70,169, · · · is constructed in a way

somewhat analogous to the Fibonacci sequence, except that each number is twice the

preceding number plus the number before that. (It’s easy to see why this has to be

true, because each convergent is constructed from the previous one by inverting the

fraction and adding 2.) After subtracting 1 from each of these fractions we get the

convergents to
√

2:
√

2 = 1.41421356 · · ·

1/1 = 1.00000000 · · ·

3/2 = 1.50000000 · · ·

7/5 = 1.40000000 · · ·

17/12 = 1.41666666 · · ·

41/29 = 1.41379310 · · ·

99/70 = 1.41428571 · · ·

239/169 = 1.41420118 · · ·

577/408 = 1.41421568 · · ·

We can compute the continued fraction for
√

3 by the same method as for
√

2,

but something slightly different happens:

(1)
√

3 = 1 + (
√

3 − 1) since
√

3 is between 1 and 2. Computing 1
√

3−1
, we have

1
√

3−1
=

1
√

3−1
·
√

3+1
√

3+1
=

√

3+1
2 .

(2)
√

3+1
2 = 1+ (

√

3−1
2 ) since the numerator

√

3+1 of
√

3+1
2 is between 2 and 3. Now

we have a remainder r2 =
√

3−1
2 which is different from the previous remainder

r1 =
√

3 − 1, so we have to compute 1
r2
=

2
√

3−1
, namely 2

√

3−1
=

2
√

3−1
·
√

3+1
√

3+1
=

√

3+ 1.

(3)
√

3+ 1 = 2+ (
√

3− 1) since
√

3+ 1 is between 2 and 3.

Now this remainder r3 =
√

3− 1 is the same as r1 , so instead of the same step being

repeated infinitely often, as happened for
√

2, the same two steps will repeat infinitely

often. This means we get the continued fraction
√

3 = 1+ 1
!↗1+

1
!↗2+

1
!↗1+

1
!↗2+

1
!↗1+

1
!↗2+ · · ·
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Checking this takes a little more work than before. We begin by isolating the part of

the continued fraction that repeats periodically, so we set

x = 1
!↗1+

1
!↗2+

1
!↗1+

1
!↗2+

1
!↗1+

1
!↗2+ · · ·

Taking reciprocals, we get

1

x
= 1+ 1

!↗2+
1
!↗1+

1
!↗2+

1
!↗1+

1
!↗2+ · · ·

Subtracting 1 from both sides gives

1

x
− 1 = 1

!↗2+
1
!↗1+

1
!↗2+

1
!↗1+

1
!↗2+ · · ·

The next step will be to take reciprocals of both sides, so before doing this we rewrite

the left side as 1−x
x . Then taking reciprocals gives

x

1− x
= 2+ 1

!↗1+
1
!↗2+

1
!↗1+

1
!↗2+ · · ·

Hence
x

1− x
− 2 = 1

!↗1+
1
!↗2+

1
!↗1+

1
!↗2+ · · · = x

Now we have the equation x
1−x − 2 = x which can be simplified to the quadratic

equation x2+2x−2 = 0, with roots x = −1±
√

3. Again the negative root is discarded,

and we get x = −1+
√

3. Thus
√

3 = 1+x = 1+ 1!↗1+
1!↗2+

1!↗1+
1!↗2+

1!↗1+
1!↗2+ · · · .

To simplify the notation we will write a bar over a block of terms in a continued

fraction that repeat infinitely often, for example

√

2 = 1+ 1!↗2 and
√

3 = 1+ 1!↗1+
1!↗2

It is true in general that for every positive integer n that is not a square, the

continued fraction for
√

n has the form a0 +
1!↗a1

+ 1!↗a2
+ · · · + 1!↗ak . The length of

the period can be large, for example

√

46 = 6+ 1!↗1+
1!↗3+

1!↗1+
1!↗1+

1!↗2+
1!↗6+

1!↗2+
1!↗1+

1!↗1+
1!↗3+

1!↗1+
1!↗12

This example illustrates two other curious facts about the continued fraction for an

irrational number
√

n :

(i) The last term of the period (12 in the example) is always twice the integer a0 (the

initial 6).

(ii) If the last term of the period is omitted, the preceding terms in the period form

a palindrome, reading the same backwards as forwards.

We will see in the next chapter why these two properties have to be true.
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It is natural to ask exactly which irrational numbers have continued fractions that

are periodic, or at least eventually periodic, like for example

1!↗2+
1!↗4+

1!↗3+
1!↗5+

1!↗7 =
1!↗2+

1!↗4+
1!↗3+

1!↗5+
1!↗7+

1!↗3+
1!↗5+

1!↗7+
1!↗3+

1!↗5+
1!↗7+· · ·

The answer is given by a theorem of Lagrange from around 1766:

Lagrange’s Theorem. The numbers whose continued fractions are eventually periodic

are exactly the numbers of the form a + b
√

n where a and b are rational numbers

and n is a positive integer that is not a square.

These numbers a + b
√

n are called quadratic irrationals because they are roots

of quadratic equations with integer coefficients. The easier half of the theorem is the

statement that the value of an eventually periodic infinite continued fraction is always

a quadratic irrational. This can be proved by showing that the method we used for

finding a quadratic equation satisfied by an eventually periodic continued fraction

works in general. Rather than following this purely algebraic approach, however, we

will develop a more geometric version of the procedure in the next section, so we

will wait until then to give the argument that proves this half of Lagrange’s Theorem.

The more difficult half of the theorem is the assertion that the continued fraction

expansion of every quadratic irrational is eventually periodic. It is not at all apparent

from the examples of
√

2 and
√

3 why this should be true in general, but in the next

chapter we will develop some theory that will make it clear.

What can be said about the continued fraction expansions of irrational numbers

that are not quadratic, such as 3
√

2, π , or e , the base for natural logarithms? It

happens that e has a continued fraction whose terms have a very nice pattern, even

though they are not periodic or eventually periodic:

e = 2+ 1
!↗1+

1
!↗2+

1
!↗1

︸ ︷︷ ︸

+1
!↗1+

1
!↗4+

1
!↗1

︸ ︷︷ ︸

+1
!↗1+

1
!↗6+

1
!↗1

︸ ︷︷ ︸

+· · ·

where the terms are grouped by threes with successive even numbers as middle de-

nominators. Even simpler are the continued fractions for certain numbers built from

e that have arithmetic progressions for their denominators:

e− 1

e+ 1
= 1
!↗2+

1
!↗6+

1
!↗10+

1
!↗14+ · · ·

e2 − 1

e2 + 1
= 1
!↗1+

1
!↗3+

1
!↗5+

1
!↗7+ · · ·

The last two formulas were found by Lambert in 1770, while the expression for e itself

was found by Euler in 1737.
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For
3
√

2 and π , however, the continued fractions have no known pattern. For π

the continued fraction begins

π = 3+ 1
!↗7+

1
!↗15+

1
!↗1+

1
!↗292+ · · ·

Here the first four convergents are 3, 22/7, 333/106, and 355/113. We recognize

22/7 as the familiar approximation 31
7 to π . The convergent 355/113 is a particularly

good approximation to π since its decimal expansion begins 3.14159282 whereas

π = 3.1415926535 · · ·. It is no accident that the convergent 355/113 obtained by

truncating the continued fraction just before the 292 term gives a good approximation

to π since it is a general fact that a convergent immediately preceding a large term

in the continued fraction always gives an especially good approximation, because

the next jump in the zigzag path in the Farey diagram will be rather small, and all

succeeding jumps will of course be smaller still.

There are nice continued fractions for π if one allows numerators larger than 1,

as in the following formula discovered by Euler:

π = 3+ 12

!↗6+
32

!↗6+
52

!↗6+
72

!↗6+ · · ·

However, it is the continued fractions with numerator 1 that have the nicest proper-

ties, so we will not consider the more general sort in this book.
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1.3 Linear Fractional Transformations

One thing one notices about the various versions the Farey diagram is their sym-

metry. For the circular Farey diagram the symmetries are the reflections across the

horizontal and vertical axes and the 180 degree rotation about the center. For the

standard Farey diagram in the upper halfplane there are symmetries that translate

the diagram by any integer distance to the left or the right, as well as reflections

across certain vertical lines, the vertical lines through an integer or half-integer point

on the x -axis. The Farey diagram could also be drawn to have 120 degree rotational

symmetry and three reflectional symmetries.

Our purpose in this section is to study all possible symmetries of the Farey diagram,

where we interpret the word “symmetry" in a broader sense than the familiar meaning

from Euclidean geometry. For our purposes, symmetries will be invertible transfor-

mations that take vertices to vertices and edges to edges. (It follows that triangles

are sent to triangles.) There are simple algebraic formulas for these more general

symmetries, and these formulas lead to effective means of calculation. One of the ap-

plications will be to computing the values of periodic or eventually periodic continued

fractions.

From linear algebra one is familiar with the way in which 2 × 2 matrices
(
a b
c d

)

correspond to linear transformations of the plane R2 , transformations of the form

T

(

x
y

)

=

(

a b
c d

)(

x
y

)

=

(

ax + by
cx + dy

)

In our situation we are going to restrict a, b, c, d, x, y to be integers. Then by asso-

ciating to a pair (x,y) the fraction x/y one obtains a closely related transformation

T

(
x

y

)

=
ax + by

cx + dy
=
a
(x
y

)

+ b

c
(x
y

)

+ d

If we set z = x/y then T can also be written in the form

T(z) =
az + b

cz + d
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Such a transformation is called a linear fractional transformation since it is defined

by a fraction whose numerator and denominator are linear functions.

In the formula T(x/y) = (ax+by)/(cx+dy) there is no problem with allowing

x/y = 1/0 just by setting (x,y) = (1,0) , and the result is that T(1/0) = a/c . The

value T(x/y) = (ax + by)/(cx + dy) can also sometimes be 1/0. This means

that T defines a function from vertices of the Farey diagram to vertices of the Farey

diagram. We would like T to take edges of the diagram to edges of the diagram, and

the following result gives a condition for this to happen.

Proposition. If the matrix
(
a b
c d

)

has determinant ±1 then the associated linear frac-

tional transformation T takes each pair of vertices in the Farey diagram that lie at the

ends of an edge of the diagram to another such pair of vertices.

Proof : We showed in the previous section that two vertices labeled p/q and r/s are

joined by an edge in the diagram exactly when ps − qr = ±1, or in other words

when the matrix
(
p r
q s

)

has determinant ±1. The two columns of the product matrix
(
a b
c d

)(
p r
q s

)

correspond to the two vertices T(p/q) and T(r/s) , by the definition of

matrix multiplication:
(

a b
c d

)(

p r
q s

)

=

(

ap + bq ar + bs
cp + dq cr + ds

)

The proposition can then be restated as saying that if
(
a b
c d

)

and
(
p r
q s

)

each have

determinant ±1 then so does their product
(
a b
c d

)(
p r
q s

)

. But it is a general fact about

determinants that the determinant of a product is the product of the determinants.

(This is easy to prove by a direct calculation in the case of 2 × 2 matrices.) So the

product of two matrices of determinant ±1 has determinant ±1. %⊓

As notation, we will use LF(Z) to denote the set of all linear fractional transfor-

mations T(x/y) = (ax + by)/(cx + dy) with coefficients a,b, c, d in Z such that

the matrix
(
a b
c d

)

has determinant ±1.

Changing the matrix
(
a b
c d

)

to its negative
(
−a −b
−c −d

)

produces the same linear frac-

tional transformation since (−ax−by)/(−cx−dy) = (ax+by)/(cx+dy) . This is

in fact the only way that different matrices can give the same linear fractional transfor-

mation T , as we will see later in this section. Note that changing
(
a b
c d

)

to its negative
(
−a −b
−c −d

)

does not change the determinant. Thus each linear fractional transformation

in LF(Z) has a well-defined determinant, either +1 or −1. Later in this section we

will also see how the distinction between determinant +1 and determinant −1 has a

geometric interpretation in terms of orientations.
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A useful fact about LF(Z) is that each transformation T in LF(Z) has an inverse

T−1 in LF(Z) because the inverse of a 2× 2 matrix is given by the formula

(

a b
c d

)−1

=
1

ad− bc

(

d −b
−c a

)

Thus if a,b, c, d are integers with ad − bc = ±1 then the inverse matrix also has

integer entries and determinant ±1. The factor 1
ad−bc is ±1 so it can be ignored since

the matrices
(
a b
c d

)

and −
(
a b
c d

)

determine the same linear fractional transformation,

as we observed in the preceding paragraph.

The preceding proposition says that each linear fractional transformation T in

LF(Z) not only sends vertices of the Farey diagram to vertices, but also edges to edges.

It follows that T must take triangles in the diagram to triangles in the diagram, since

triangles correspond to sets of three vertices, each pair of which forms the endpoints

of an edge. Since each transformation T in LF(Z) has an inverse in LF(Z) , this implies

that T gives a one-to-one (injective) and onto (surjective) transformation of vertices,

and also of edges and triangles. For example, if two edges e1 and e2 have the same

image T(e1) = T(e2) then we must have T−1(T(e1)
)

= T−1(T(e2)
)

or in other words

e1 = e2 , so T cannot send two different edges to the same edge, which means it is

one-to-one on edges. Also, every edge e1 is the image T(e2) of some edge e2 since

we can write e1 = T
(

T−1(e1)
)

and let e2 = T
−1(e1) . The same reasoning works with

vertices and triangles as well as edges.

A useful property of linear fractional transformations that we will use repeatedly

is that the way an element of LF(Z) acts on the Farey diagram is uniquely determined

by where a single triangle is sent. This is because once one knows where one triangle

goes, this uniquely determines where the three adjacent triangles go, and this in turn

determines where the six new triangles adjacent to these three go, and so on.
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Seven Types of Transformations

We will now give examples illustrating seven different ways that elements of LF(Z)

can act on the Farey diagram.

(1) The transformation T(x/y) = y/x with

matrix
(

0 1
1 0

)

gives a reflection of the circu-

lar Farey diagram across its vertical axis

of symmetry. This is a reflection across

a line perpendicular to an edge of the

diagram.

(2) The reflection across the horizon-

tal axis of symmetry is the element

T(x/y) = −x/y with matrix
(
−1 0
0 1

)

.

This is a reflection across an edge of the

diagram.

(3) If we compose the two preceding re-

flections we get the transformation T(x/y) =

−y/x with matrix
(

0 1
−1 0

)

. This rotates the Farey diagram 180 degrees about its cen-

ter, interchanging 1/0 and 0/1 and also interchanging 1/1 and −1/1. Thus it rotates

the diagram 180 degrees about the centerpoint of an edge.

(4) Consider T(x/y) = y/(y − x) corresponding to the matrix
(

0 1
−1 1

)

. This has the

effect of “rotating” the triangle ⟨1/0,0/1,1/1⟩ about its centerpoint, taking 1/0 to

0/1, 0/1 to 1/1 and 1/1 back to 1/0. The whole Farey diagram is then “rotated”

about the same point.

(5) Next let T(x/y) = x/(x + y) , corresponding to the matrix
(

1 0
1 1

)

. In particu-

lar T(0/1) = 0/1, so 0/1 is a fixed point of T , a point satisfying T(z) = z . Also

we have T(1/0) = 1/1 and more generally T(1/n) = 1/(n + 1) . Thus the triangle

⟨0/1,1/0,1/1⟩ is taken to the triangle ⟨0/1,1/1,1/2⟩ . This implies that T is a “rota-

tion” of the Farey diagram about the vertex 0/1, taking each triangle with 0/1 as a

vertex to the next triangle in the clockwise direction about this vertex.

(6) A different sort of behavior is exhibited by T(x/y) = (2x + y)/(x + y) corre-

sponding to
(

2 1
1 1

)

. To visualize T as a transformation of the Farey diagram let us

look at the infinite strip
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−−−
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−−−
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2

3
−−−
5

8

−−−
3

5
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We claim that T translates the whole strip one unit to the right. To see this, notice

first that since T takes 1/0 to 2/1, 0/1 to 1/1, and 1/1 to 3/2, it takes the triangle

⟨1/0,0/1,1/1⟩ to the triangle ⟨2/1,1/1,3/2⟩ . This implies that T takes the triangle

just to the right of ⟨1/0,0/1,1/1⟩ to the triangle just to the right of ⟨2/1,1/1,3/2⟩ ,

and similarly each successive triangle is translated one unit to the right. The same

argument shows that each successive triangle to the left of the original one is also

translated one unit to the right. Thus the whole strip is translated one unit to the

right.

(7) Using the same figure as in the preceding example, consider the transformation

T(x/y) = (x + y)/x corresponding to the matrix
(

1 1
1 0

)

. This sends the triangle

⟨1/0,0/1,1/1⟩ to ⟨1/1,1/0,2/1⟩ which is the next triangle to the right in the infinite

strip. Geometrically, T translates the first triangle half a unit to the right and reflects

it across the horizontal axis of the strip. It follows that the whole strip is translated

half a unit to the right and reflected across the horizontal axis. Such a motion is

sometimes referred to as a glide-reflection. Notice that performing this motion twice

in succession yields a translation of the strip one unit to the right, the transformation

in the preceding example.

Thus we have seven types of symmetries of the Farey diagram: reflections across

an edge or a line perpendicular to an edge; rotations about the centerpoint of an

edge or a triangle, or about a vertex; and translations and glide-reflections of periodic

infinite strips. (Not all periodic strips have glide-reflection symmetries.) It is a true

fact, though we won’t prove it here, that every element of LF(Z) acts on the Farey

diagram in one of these seven ways, except for the identity transformation T(x/y) =

x/y of course.

Specifying Where a Triangle Goes

As we observed earlier, the action of an element of LF(Z) on the Farey diagram is

completely determined by where it sends a single triangle. Now we will see that there

always exists an element of LF(Z) sending any triangle to any other triangle, and in
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fact, one can do this specifying where each individual vertex of the triangle goes.

As an example, suppose we wish to find an element T of LF(Z) that takes the

triangle ⟨2/5,1/3,3/8⟩ to the triangle ⟨5/8,7/11,2/3⟩ , preserving the indicated or-

dering of the vertices, so T(2/5) = 5/8, T(1/3) = 7/11, and T(3/8) = 2/3. For

this problem to even make sense we might want to check first that these really are

triangles in the Farey diagram. In the first case, ⟨2/5,1/3⟩ is an edge since the matrix
(

2 1
5 3

)

has determinant 1, and there is a triangle joining this edge to 3/8 since 3/8 is

the mediant of 2/5 and 1/3. For the other triangle, the determinant of
(

5 2
8 3

)

is −1

and the mediant of 5/8 and 2/3 is 7/11.

As a first step toward constructing the desired transformation T we will do some-

thing slightly weaker: We construct a transformation T taking the edge ⟨2/5,1/3⟩ to

the edge ⟨5/8,7/11⟩ . This is rather easy if we first notice the general fact that the

transformation T(x/y) = (ax+by)/(cx+dy) with matrix
(
a b
c d

)

takes 1/0 to a/c

and 0/1 to b/d . Thus the transformation T1 with matrix
(

2 1
5 3

)

takes ⟨1/0,0/1⟩

to ⟨2/5,1/3⟩ , and the transformation T2 with matrix
(

5 7
8 11

)

takes ⟨1/0,0/1⟩ to

⟨5/8,7/11⟩ . Then the product

T2T
−1
1 =

(

5 7
8 11

)(

2 1
5 3

)−1

takes ⟨2/5,1/3⟩ first to ⟨1/0,0/1⟩ and then to ⟨5/8,7/11⟩ . Doing the calculation, we

get
(

5 7
8 11

)(

2 1
5 3

)−1

=

(

5 7
8 11

)(

3 −1
−5 2

)

=

(

−20 9
−31 14

)

This takes the edge ⟨2/5,1/3⟩ to the edge ⟨5/8,7/11⟩ , but does it do the right thing

on the third vertex of the triangle ⟨2/5,1/3,3/8⟩ , taking it to the third vertex of

⟨5/8,7/11,2/3⟩? This is not automatic since there are always two triangles containing

a given edge, and in this case the other triangle having ⟨5/8,7/11⟩ as an edge is

⟨5/8,7/11,12/19⟩ since 12/19 is the mediant of 5/8 and 7/11. In fact, if we compute

what our T does to 3/8 we get
(

−20 9
−31 14

)(

3
8

)

=

(

12
19

)

so we don’t have the right T yet. To fix the problem, notice that we have a little

flexibility in the choice of a matrix
(
a b
c d

)

taking 1/0 to a/c and 0/1 to b/d since

we can multiply either column by −1 without affecting the fractions a/b and c/d . It

doesn’t matter which column we multiply by −1 since multiplying both columns by
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−1 multiplies the whole matrix by −1 which doesn’t change the associated element

of LF(Z) , as noted earlier. In the case at hand, suppose we change the sign of the first

column of
(

5 7
8 11

)

. Then we get

(

−5 7
−8 11

)(

2 1
5 3

)−1

=

(

−5 7
−8 11

)(

3 −1
−5 2

)

=

(

−50 19
−79 30

)

This fixes the problem since
(

−50 19
−79 30

)(

3
8

)

=

(

2
3

)

Here is a general statement summarizing what we saw in this one example:

Proposition. (a) For any two triangles ⟨p/q, r/s, t/u⟩ and ⟨p′/q′, r ′/s′, t′/u′⟩ in the

Farey diagram there is a unique element T in LF(Z) taking the first triangle to the

second triangle preserving the ordering of the vertices, so T(p/q) = p′/q′ , T(r/s) =

r ′/s′ , and T(t/u) = t′/u′ .

(b) The matrix
(
a b
c d

)

representing a given transformation T in LF(Z) is unique except

for replacing it by
(
−a −b
−c −d

)

.

Proof : As we saw in the example above, there is a composition T2T
−1
1 taking the edge

⟨p/q, r/s⟩ to ⟨p′/q′, r ′/s′⟩ , where T1 has matrix
(
p r
q s

)

and T2 has matrix
(
p′ r ′

q′ s′

)

.

If this composition T2T
−1
1 does not take t/u to t′/u′ we modify T2 by changing the

sign of one of its columns, say the first column. Thus we change
(
p′ r ′

q′ s′

)

to
(
−p′ r ′

−q′ s′

)

,

which equals the product
(
p′ r ′

q′ s′

)(
−1 0
0 1

)

. The matrix
(
−1 0
0 1

)

corresponds to the trans-

formation R(x/y) = −x/y reflecting the Farey diagram across the edge ⟨1/0,0/1⟩ .

Thus we are replacing T2T
−1
1 by T2RT

−1
1 , inserting a reflection that interchanges the

two triangles containing the edge ⟨1/0,0/1⟩ . By inserting R we change where the

composition T2T
−1
1 sends the third vertex t/u of the triangle ⟨p/q, r/s, t/u⟩ , so we

can guarantee that t/u is taken to t′/u′ . This proves part (a).

For part (b), note first that the transformation T determines the values T(1/0) =

a/c and T(0/1) = b/d . The fractions a/c and b/d are in lowest terms (because

ad− bc = ±1) so this means that we know the two columns of the matrix
(
a b
c d

)

up

to multiplying either or both columns by −1. We need to check that changing the

sign of one column without changing the sign of the other column gives a different

transformation. It doesn’t matter which column we change since
(
−a b
−c d

)

= −
(
a −b
c −d

)

.

As we saw in part (a), changing the sign in the first column amounts to replacing T

by the composition TR , but this is a different transformation from T since it has a

different effect on the triangles containing the edge ⟨1/0,0/1⟩ . %⊓
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Continued Fractions Again

Linear fractional transformations can be used to compute the values of periodic

or eventually periodic continued fractions, and to see that these values are always

quadratic irrational numbers. To illustrate this, consider the periodic continued frac-

tion
1
!↗2+

1
!↗3+

1
!↗1+

1
!↗4

The associated periodic strip in the Farey diagram is the following:

We would like to compute the element T of LF(Z) that gives the rightward translation

of this strip that exhibits the periodicity. A first guess is the T with matrix
(

4 19
9 43

)

since this sends ⟨1/0,0/1⟩ to ⟨4/9,19/43⟩ . This is actually the correct T since it

sends the vertex 1/1 just to the right of 1/0, which is the mediant of 1/0 and 0/1,

to the vertex (4+ 19)/(9+ 43) just to the right of 4/9, which is the mediant of 4/9

and 19/43. This is a general fact since
(
a b
c d

)(
1
1

)

=
(
a+b
c+d

)

.

The sequence of fractions labeling the vertices along the zigzag path in the strip

moving toward the right are the convergents to 1!↗2+
1!↗3+

1!↗1+
1!↗4. Call these con-

vergents z1, z2, · · · and their limit z . When we apply the translation T we are taking

each convergent to a later convergent in the sequence, so both the sequence {zn} and

the sequence {T(zn)} converge to z . Thus we have

T(z) = T(limzn) = limT(zn) = z

where the middle equality uses the fact that T is continuous. (Note that a linear

fractional transformation T(z) = az+b
cz+d is defined for real values of z , not just rational

values z = x/y , when T(x/y) = (ax + by)/(cx + dy) = (axy + b)/(c
x
y + d) .)

In summary, what we have just argued is that the value z of the periodic continued

fraction satisfies the equation T(z) = z , or in other words, 4z+19
9z+43 = z . This can be

rewritten as 4z+19 = 9z2+43z , which simplifies to 9z2+39z−19 = 0. Computing

the roots of this quadratic equation, we get

z =
−39±

√

392 + 4 · 9 · 19

18
=
−39± 3

√

132 + 4 · 19

18
=
−13±

√

245

6
=
−13± 7

√

5

6
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The positive root is the one that the right half of the infinite strip converges to, so we

have

−13+ 7
√

5

6
= 1
!↗2+

1
!↗3+

1
!↗1+

1
!↗4

Incidentally, the other root (−13 − 7
√

5)/6 has an interpretation in terms of the di-

agram as well: It is the limit of the numbers labeling the vertices of the zigzag path

moving off to the left rather than to the right. This follows by the same sort of argu-

ment as above.

If a periodic continued fraction has period of odd length, the transformation

giving the periodicity is a glide-reflection of the periodic strip rather than a translation.

As an example, consider

1
!↗1+

1
!↗2+

1
!↗3

Here the periodic strip is

The transformation T with matrix
(

2 7
3 10

)

takes ⟨1/0,0/1⟩ to ⟨2/3,7/10⟩ and the me-

diant 1/1 of 1/0 and 0/1 to the mediant 9/13 of 2/3 and 7/10 so this transformation

is a glide-reflection of the strip. The equation T(z) = z becomes 2z+7
3z+10 = z , which

simplifies to 2z+7 = 3z2+10z and then 3z2+8z−7 = 0, with roots (−4±
√

37)/3.

The positive root gives

−4+
√

37

3
= 1
!↗1+

1
!↗2+

1
!↗3

Continued fractions that are only eventually periodic can be treated in a similar

fashion. For example, consider

1
!↗2+

1
!↗2+

1
!↗1+

1
!↗2+

1
!↗3

The corresponding infinite strip is
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In this case if we discard the triangles corresponding to the initial nonperiodic part of

the continued fraction, 1!↗2+
1!↗2 , and then extend the remaining periodic part in both

directions, we obtain a periodic strip that is carried to itself by the glide-reflection T

taking ⟨1/2,2/5⟩ to ⟨8/19,27/64⟩ :

We can compute T as the composition ⟨1/2,2/5⟩→⟨1/0,0/1⟩→⟨8/19,27/64⟩ cor-

responding to the product

(

8 27
19 64

)(

1 2
2 5

)−1

=

(

8 27
19 64

)(

5 −2
−2 1

)

=

(

−14 11
−33 26

)

Since this transformation takes 3/7 to the mediant (8+27)/(19+64) , it is the glide-

reflection we want. Now we solve T(z) = z . This means −14z+11
−33z+26 = z , which reduces

to the equation 33z2 − 40z + 11 = 0 with roots z = (20 ±
√

37)/33. Both roots are

positive, and we want the smaller one, (20−
√

37)/33, because along the top edge of

the strip the numbers decrease as we move to the right, approaching the smaller root,

and they increase as we move to the left, approaching the larger root. Thus we have

(20−
√

37)/33 = 1
!↗2+

1
!↗2+

1
!↗1+

1
!↗2+

1
!↗3

Notice that
√

37 occurs in both this example and the preceding one where we

computed the value of 1!↗1+
1!↗2+

1!↗3 . This is not just an accident. It had to happen

because to get from 1!↗1+
1!↗2+

1!↗3 to 1!↗2+
1!↗2+

1!↗1+
1!↗2+

1!↗3 one adds 2 and inverts,

then adds 2 and inverts again, and each of these operations of adding an integer or

taking the reciprocal takes place within the field Q(
√

37) consisting of numbers of the

form a+b
√

37 with a and b rational. More generally, this argument shows that any

eventually periodic continued fraction whose periodic part is 1!↗1+
1!↗2+

1!↗3 has as its
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value some number in the field Q(
√

37) . However, not all irrational numbers in this

field have eventually periodic continued fractions with periodic part 1!↗1+
1!↗2+

1!↗3 .

For example, the continued fraction for
√

37 itself is 6+1!↗12 , with a different periodic

part. (Check this by computing the value of this continued fraction.)

One Half of Langrange’s Theorem

The procedure we have used in these examples works in general for any irrational

number z whose continued fraction is eventually periodic. From the periodic part of

the continued fraction one constructs a periodic infinite strip in the Farey diagram,

where the periodicity is given by a linear fractional transformation T(z) = az+b
cz+d with

integer coefficients, with T either a translation or a glide-reflection of the strip. As

we argued in the first example, the number z satisfies the equation T(z) = z . This

becomes the quadratic equation az + b = cz2 + dz with integer coefficients, or in

simpler form, cz2 + (d − a)z − b = 0. By the quadratic formula, the roots of this

equation have the form A + B
√

n for some rational numbers A and B and some

integer n . We know that the real number z is a root of the equation so n can’t be

negative, and it can’t be a square since z is irrational.

Thus we have an argument that proves one half of Lagrange’s Theorem, the state-

ment that a number whose continued fraction is periodic or eventually periodic is a

quadratic irrational. There is one technical point that should be addressed, however.

Could the leading coefficient c in the quadratic equation cz2 + (d − a)z − b = 0 be

zero? If this were the case then we couldn’t apply the quadratic formula to solve

for z , so we need to show that c cannot be zero. We do this in the following way. If

c were zero the equation would become the linear equation (d − a)z − b = 0. If the

coefficient of z in this equation is nonzero, we have only one root, z = b/(d− a) , a

rational number contrary to the fact that z is irrational since its continued fraction is

infinite. Thus we are left with the possibility that c = 0 and a = d , so the equation

for z reduces to the equation b = 0. Then the transformation T would have the form

T(z) = az
a = z so it would be the identity transformation. However we know it is a

genuine translation or a glide-reflection, so it is not the identity. We conclude from

all this that c cannot be zero, and the technical point is taken care of.

Orientations

Elements of LF(Z) are represented by integer matrices
(
a b
c d

)

of determinant ±1.

The distinction between determinant +1 and −1 has a very nice geometric interpreta-

tion in terms of orientations, which can be described in terms of triangles. A triangle



Chapter 1 The Farey Diagram 42

in the Farey diagram can be oriented by choosing either the clockwise or counter-

clockwise ordering of its three vertices. An element T of LF(Z) takes each triangle

to another triangle in a way that either preserves the two possible orientations or

reverses them.

For example, among the seven types of transformations we looked at earlier, only

reflections and glide-reflections reverse the orientations of triangles. Note that if a

transformation T preserves the orientation of one triangle, it has to preserve the

orientation of the three adjacent triangles, and then of the triangles adjacent to these,

and so on for all the triangles. Similarly, if the orientation of one triangle is reversed

by T , then the orientations of all triangles are reversed.

Proposition. A transformation T(x/y) = (ax + by)/(cx + dy) in LF(Z) preserves

orientations of triangles in the Farey diagram when the determinant ad − bc is +1

and reverses the orientations when the determinant is −1 .

Proof : We will first prove a special case and then deduce the general case from the

special case. The special case is that a,b, c, d are all positive or zero. The transforma-

tion T with matrix
(
a b
c d

)

takes the edge ⟨1/0,0/1⟩ in the circular Farey diagram to the

edge ⟨a/c, b/d⟩ , and if a,b, c, d are all positive or zero, this edge lies in the upper half

of the diagram. Since T(1/1) = (a+b)/(c+d) , the triangle ⟨1/0,0/1,1/1⟩ is taken to

the triangle ⟨a/c, b/d, (a+b)/(c +d)⟩ whose third vertex (a+b)/(c+d) lies above

the edge ⟨a/c, b/d⟩ , by the way the Farey diagram was constructed using mediants,

since we assume a,b, c, d are positive or zero. We know that the edge ⟨a/c, b/d⟩ is

oriented to the right if ad − bc = +1 and to the left if ad − bc = −1. This means

that T preserves the orientation of the triangle ⟨1/0,0/1,1/1⟩ if the determinant is

+1 and reverses the orientation if the determinant is −1.
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This proves the special case.

The general case can be broken into two subcases, according to whether the edge

⟨a/c, b/d⟩ lies in the upper or the lower half of the diagram. If ⟨a/c, b/d⟩ lies in the

upper half of the diagram, then after multiplying one or both columns of
(
a b
c d

)

by

−1 if necessary, we will be in the special case already considered. Multiplying both

columns by −1 doesn’t affect T . Multiplying one column by −1 corresponds to first

reflecting across the edge ⟨1/0,0/1⟩ , as we have seen earlier. Modifying T in this

way changes the sign of the determinant and it also changes whether T preserves or

reverses orientation, so the special case already proved implies the case that T takes

⟨1/0,0/1⟩ to an edge in the upper half of the diagram.

The remaining possibility is that T takes the edge ⟨1/0,0/1⟩ to an edge in the

lower half of the diagram. In this case if we follow T by reflection across the edge

⟨1/0,0/1⟩ we get a new transformation taking ⟨1/0,0/1⟩ to an edge in the upper half

of the diagram. As before, composing with this reflection changes T from orientation-

preserving to orientation-reversing and vice versa, and it also changes the sign of the

determinant since the matrix
(
a b
c d

)

is changed to
(
−1 0
0 1

)(
a b
c d

)

=
(
−a −b
c d

)

, so this case

follows from the previous case. %⊓

Computational note: To determine whether a matrix representing an element of

LF(Z) has determinant +1 or −1 it suffices to compute just the last digit of the

determinant, and this can be done using just the last digit of the entries in the matrix.

This is easy to do in one’s head even if the entries in the matrix have many digits.

We will let LF+(Z) denote the elements of LF(Z) corresponding to matrices of

determinant +1.

Proposition. For any two edges ⟨p/q, r/s⟩ and ⟨p′/q′, r ′/s′⟩ of the Farey diagram

there exists a unique element T ∈ LF+(Z) taking the first edge to the second edge
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preserving the ordering of the vertices, so T(p/q) = p′/q′ and T(r/s) = r ′/s′ .

Proof : We already know that there exists an element T in LF(Z) with T(p/q) = p′/q′

and T(r/s) = r ′/s′ , and in fact there are exactly two choices for T which are distin-

guished by which of the two triangles containing ⟨p′/q′, r ′/s′⟩ a triangle containing

⟨p/q, r/s⟩ is sent to. One of these choices will make T preserve orientation and the

other will make T reverse orientation. So there is only one choice where the determi-

nant is +1. %⊓


