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THE MATHEMATICAL GAZETTE 

THE TREATMENT OF ELEMENTARY GEOMETRY 
BY A GROUP-CALCULUS. 

BY G. THOMSEN. 

THERE is no need to recommend to teachers in this country, familiar 
with Dobbs' School Course and with later books of the same tendency, 
the free use of the ideas of displacement, rotation, and reflection. In 
the course of a paper read at the Zurich Congress last year, Prof. 
Thomsen, of Rostock, gave some striking examples of the effective 
introduction of the language and notation of the theory of groups into 
work of this kind, and afterwards he agreed willingly to contribute to 
the Gazette an article on the subject. For applications to their own 
problems we must refer readers elsewhere*, since Prof. Thomsen has 
paid them the compliment of explaining a point of view that would be 
quite unsuitable in the school. To some of our readers we must apologise 
for replacing the original article by a translation, but since there are no 
familiar symbols or recognisable formulae to facilitate the grasping of a 
novel theory, we think that a substantial minority will be grateful for 
this assistance. In hnaking his version, Prof. Neville has taken one or 
two liberties with the author's notation. 

In the following article the analytical geometry of Descartes is 
replaced by another method of dealing with elementary metrical 
geometry. This method does not depend on the concept of number 
and the laws of algebra, but is based only on the concept of a group 
and deals with elementary geometry by means of a pure group- 
calculust. 

? 1. The group of congruent transformations in the euclidean 
plane falls into the two divisions of direct congruences or displace- 
ments and mirrored congruences or reversals. For particular 
assumptions regarding congruent transformations the notation of 
the theory of groups is almost instinctive. The transformation 
which is the result of applying the two transformations eA, B in 
succession is denoted as a product Be/A. If the same transformation 
results from applying in succession the transformations C, )D, we 
write 'DC = Be4A. If ') is known, we can determine C from this group 
relation, by "multiplying on the left" by the transformation ID-1 
which is the inverse of CD; we have simply C = Dq-lBA . Again, in 
any group relation we can always bring all the terms to one side, 
leaving on the other side nothing but identity, which may be 
denoted+ by 1; in our example, C-1CD-lBe = 1. 

Among congruent transformations, those which are involutions 
are of special importance. An involutionary transformation is one 
which coincides with its inverse (e4-1 = A). A geometrical trans- 

* G. Thomsen, " Uber einen neuen Zweig geometrischer Axiomatik und eine neue 
Art von analytischer Geometrie, " Math. Zeitschrift, 34, pp. 668-720 (1932). See 
further: G. Thomsen, "Grundlagen der Elementargeometrie", Hamburger 
mathematische Einzelschriften, 15 (Teubner, 1933). 

t The necessary elements of this calculus are set out in the paper to which 
reference has already been made. 

+ In the theory of groups, identity is usually denoted by the letter E, reserved 
for the purpose. 

230 

This content downloaded from 128.243.201.110 on Fri, 6 Jun 2014 10:23:57 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


GEOMETRY AND GROUP-CALCULUS 

formation is involutionary if the result of applying it twice in suc- 
cession to an arbitrary figure is to reproduce the original figure 
(eA2 = 1). It is well known that the only congruent involutions other 
than mere identity are reflections in points and reflections in lines. 
Reflection in a point or a line will be denoted by the same symbol 
as the point or line itself. 

A succession of reflections which results in identity we call a 
circuit of reflections. Thus to say that TdSRcba is a circuit means 
that after seven reflections, in the four given lines a, b, c, d and the 
three given points R, S, T, taken in the order indicated, that is, in 
the reverse of the written order, any figure is found in its original 
position. 

Calculation with circuits of reflections is much simplified by the 
fact that there is no need to attach the negative exponent - 1 to an 
inverse element in the process of solution. For example, suppose 
that for six point-reflections P, Q, R, S, T, V, the successions PQRS, 
RSTV both result in identity. From the first circuit, on multipli- 
cation first by P and then by Q, it follows, since P2 =Q2= 1, that 
RS =QP, and substituting in the second succession we find that 

If PQRS and RSTV are both circuits, so also is QPTV. 
The following rules evidently hold for any circuit: 

(1) Any number of reflections may be moved from the beginning 
to the end of the circuit: for example, if RcbQPa =l, then also 
QPaRcb =1. 

(2) The order may be reversed: if RcbQPa=l, then also 
aPQbcR = 1. 

In a phrase, the circuit property concerns only the cyclic order of the 
reflections. 

If we use such natural abbreviations as (QPba)2 for QPbaQPba 
and (cba)3 for cbacbacba, the letters inside the brackets may also be 
rearranged according to the rules just given: if (QPba)2 and (cba)3 
are circuits, so are (baQP)2 and (abc)3. , 

We have one further addition to make to our notation. If a 
succession of reflections QPba is already a circuit, so also is the 
succession (QPba)n formed by any number of repetitions of QPba. 
But the converse is of course not true : (QPba)n= 1 does not imply 
QPba =1, and in the simplest case, a proper involution is precisely 
a transformation eA, such that CA2 = 1 while cA + 1. If (QPba) = 1 is 
assumed not to be a consequence, trivial as it would be, of any simpler 
relation (QPba)m = 1 in which m is a factor of n, we speak of (QPba)n 
as a primitive circuit, or more briefly as a cycle, of order n, and we 
write* QPba e n. Thus QPba E 2 means that (QPba)2=1, 
while QPba - 1 : the succession of reflections taken twice restores 
every figure to its original position, but taken once only is a genuine 
transformation of the plane. 

* In the theory of equations wn is commonly used to denote a primitive root of 
zn :=1, that is, a root which is not a root of a similar equation of lower degree. Two 
cycles of the same order are not necessarily identical, and therefore we use the 
logical symbol of inclusion, e, rather than a symbol of equality, which might prove 
misleading. 
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THE MATHEMATICAL GAZETTE 

If three congruent transformations cA, B, C are such that 

C = B-lcAB, 

then C is called, in the usual terminology of the theory of groups, 
the transform of cA by ?3. Geometrically we obtain C by transforming 
the one transformation by means of the other, that is, by combining 
with ?B the correspondence which cA establishes between points of 
the plane and translating this into another correspondence. For 
suppose that cA carries X to Y; since 3 carries ?B-1X to X, ecAB 
carries B-1X to Y, and 3B-leAB carries B-1X to 3- Y. If 3 is an 
involution, the transform is expressible as BeATB and is the corre- 
spondence which carries BX to Y. For example, aPa is reflection 
in the point which is itself the reflection of the point P in the line a. 

? 2. All the simplest positional relations between points and lines 
in a plane can be characterised by circuits of reflections. For 
example, two distinct lines a, b are at right angles if and only if 
reflections in them are permutable, that is, if and only if ab =ba, or 
again, if and only if (ab)2 is a primitive circuit. We notice that 
ab = 1 is the condition for the lines to coincide and must be excluded, 
since a line is not at right angles to itself. Thus the symbolical ex- 
pression of perpendicularity is (ab)2 =1, ab # 1, or briefly, ab E 522. 

The following Table shews the characterisation of a number of 
elementary relations. 

1. ab e 22 
2. (aP)2 = 1 

3. (abc)2 = 1 

4. PQRS =1 

5. PRQR=1, P+Q 
6. PaQa = 1 

7. acbc = 1 

8. PR(QR)2=1 
9. abP=l 

10. abZ e i22 

11. abdcZ E 22 

Perpendicular lines. 
The relation of incidence: the line passes 

through the point. The relation aP =1 is 
impossible and therefore need not be for- 
mally excluded. 

The three lines belong to the same pencil, in 
the sense of projective geometry, that is, 
are either concurrent or all parallel. Again 
the formal exclusion, of abc=l, is un- 
necessary. 

The points are the vertices of a parallelo- 
gram, taken in order. 

R is the mid-point of PQ. 
a is the radical axis of PQ, that is, the 

equidistance locus or perpendicular bisector. 
c is a midline of ab; that is, if a and b are 

not parallel, c bisects one of the angles 
between them. 

R divides PQ in the ratio 2: 1. 
a and b cut at right angles at P. 
a and b are parallel, and Z is an arbitrary 

auxiliary point. If it is understood that Z 
is arbitrary, the condition (abZ)2 1= is 
adequate, since by (9) the condition abZ = 1 
would render Z determinate. 

The cross formed by the pair of lines a, b 
is directly congruent with the cross formed by 
the pair c, d, it being understood again that 
the condition is satisfied for every position 
of Z. 
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12. A1MA2M...AM =1 

13. (ahabchbc= 1 
(abc)2 f 1 

14. fbcafacbf=1 
(abc)2: 1 

15. f bcafacbf = 1 
(abc)2 =1 

16. fa (bad)2a (dab)2 =1 
(bad)2 : 1 

17. abCA bcABcaBC =1 
(abc)2 :- 1, (abZ)2 # 1 

M is the centroid of A1, A ... An for 
equal loads at these points. 

h is the altitude line perpendicular to a in 
the triangle formed by a, b, c. 

f is the first side of the pedal triangle of 
the triangle formed by a, b, c. 

a, b, c are concurrent bisectors of the angles 
of some triangle in whichf is the side opposite 
to the angle bisected by a. 

The triangle a, b, d is isosceles, with equal 
sides along b, d. If (bad)2 =1, the other con- 
dition is satisfied identically. 

The triangle whose sides are the lines a, b, 
c is directly similar to the triangle whose 
vertices are the points A, B, C. 

The proofs of the assertions contained in this Table depend for the 
most part on the following considerations: 

(1) If a and b intersect, the product ba is a rotation round their 
point of intersection through an angle which is twice the angle from 
a to b; the rotation is through an angle not greater than two right 
angles if the direction of rotation is that in which an angle from 
a to b is not obtuse. 

(2) If a and b are parallel, the product ba is a translation in a 
direction perpendicular to these lines and through a distance which 
is twice the distance from a to b. 

(3) The product QP of two point reflections is the translation in 
which the vector of the displacement of every point is twice the 
vector PQ. 
And reference can often be made with advantage to the principle of 
transforming a transformation, as described at the end of ? 1. 

As an example of the reasoning, (10) may be deduced from (1), 
(6), (7) as follows: 

By hypothesis, abZ is a proper involution, that is, an involution 
that is not mere identity; hence abZ is a single reflection. Since 
reflection in a line involves reversal, while reflection in a point does 
not, the product abZ does not involve reversal and is therefore a 
point reflection T. But the relation abZ = T is equivalent to ab = TZ, 
and since TZ is a translation, it follows that a and b are parallel. 

A few geometrical theorems can be proved by pure group theory. 
For example, in virtue of (4) in the Table, we have already in ? 1 
established a theorem of Desargues: 

If PQRS and RSTV are parallelograms, so also is QPTV. 
Again we can prove symbolically the result that 

If (abc)2, (abd)2, and (acd)2 are circuits, so also is (bcd)2. 
For (abc)2 =1 implies ab=cbac, and (abd)2=1 implies ab = dbad, 
whence cbac =dbad, that is, cbacdabd = 1; but the third condition, 
(acd)2=l, implies acd=dca, and making this substitution in the 
product cbacdabd, we have cbda2cbd =1, which on suppression of a2 
gives (cbd)2= 1, as required. But (3) of the Table shews that geo- 
metrically this theorem is trivial. 
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The great majority of theorems in elementary geometry can not 
however be proved by group theory alone. Consider for example the 
contrast between the result just proved and the theorem that 

If (abc)2 and (abd)2 are circuits and a b, so also are (acd)2 and 
(bcd)2. 
It is not in the least of the essence of a group that for any four 
involutionary elements a, b, c, d for which the relations (abc)2= 1, 
(abd)2 =1 are satisfied, the relations (acd)2 =1, (bed)2 =1 also must 
hold; this is easily seen from examples to the contrary in a suitable 
group. The corresponding geometrical theorem, which is true, rests 
therefore on special properties of the euclidean congruence group. 

? 3. There are many ways in which we can distinguish between 
point reflections and line reflections, the two kinds of proper involu- 
tions in our congruence group, on the basis of group structure alone. 
For example, point reflections, which are direct displacements, are 
characterised by the fact that they can be expressed as squares of 
congruent transformations, namely, of rotations through a right 
angle; a line reflection, being a reversal, cannot be a square. 

We adopt now the following point of view. Given any group 
whatever, finite or infinite, we construct an "artificial geometry" 
from the proper involutions in the group. We divide these involu- 
tions into two classes, calling a proper involution a " point " if it 
can be represented as the square of some element of the original 
group, a " line " if no such representation is possible*. Then we 
introduce the conditions tabulated in ? 2 as definitions of various 
positional relations. For example, by two perpendicular lines we 
mean two distinct proper involutions a, b of the group, such that 
neither is the square of any element of the group and that their 
product, in either order, is an involution; by a line and a point 
incident in each other we mean proper involutions a, P of which P 
is the square of some element but a is not, while either product of the 
two is an involution. 

For the time being, we shall interpret only the ideas corresponding 
to conditions (1)-(8) of the Table. The interesting question is, what 
theorems of ordinary geometry remain valid in an artificial geometry 
of this kind. If for example we take the group of those permutations 
of 8 objects which interchange the first 4 objects among themselves 
and the last 4 also among themselves, there are 99 of these permuta- 
tions which are involutions, and according to the criterion, 15 of 
these are points and 84 are lines. In the geometry with these 
elements, there are pairs of points without a radical axis, but there 
are also pairs with as many as 26 radical axes, that is, pairs whose 
equidistance locus consists of 26 lines. Similarly there are pairs of 
points which cannot be joined by a line, that is, pairs P, Q such that 
no line a satisfies simultaneously the two conditions (aP)2=1, 
(aQ)2 = 1; on the other hand, there are pairs joined by 8 lines, by 

* If either class is empty the geometry is uninteresting. Most geometrical 
theorems have assumptions which cannot be satisfied in this case, and according to 
the usual convention of formal logic the theorems are true theorems but there is 
nothing of which they are true. 
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20 lines, or even by 24 lines. In this geometry midpoints do not 
exist. Another geometry of the same kind can be constructed in 
which bisectors of the angles of a triangle are concurrent but per- 
pendicular bisectors of the sides are not. 

These examples shew that our artificial geometries diverge widely 
from ordinary geometry. To mention a few more examples, a mid- 
point of a pair of points need not lie either on the equidistance locus 
or on the line joining the pair, and these two lines, if they both exist, 
need not be at right angles; again, three lines which have a common 
point in the sense of condition (2) need not belong to one pencil in 
the sense of condition (3). 

? 4. So very few of the theorems of ordinary geometry being 
necessarily true in the artificial geometry associated with an arbitrary 
group, we proceed to restrict the underlying group by postulates, 
choosing postulates which are in fact satisfied by the euclidean con- 
gruence group. Adding such axioms one by one, we contract the 
circle of available groups more and more, till finally only the euclidean 
congruence group is left; more and more geometrical theorems can 
be proved, till the whole of elementary geometry is recovered. 

The convenient course for us is to take such postulates as provide 
simple rules of calculation for the rearrangement of reflection 
circuits, rules which can be combined readily with the rules of group 
transformation already used. This will be made clearer by examples. 

As a first postulate we choose 

Ax. 1 : For any three points, (PQR)2 is a primitive circuit. 

The assumption is true in ordinary geometry, since there the product 
of three point reflections is a single point reflection. In the form 
PQR =RQP, the axiom gives us a simple rule of calculation: 

In any succession of reflections which includes three consecutive 
point reflections, the two outer of these may be exchanged across the 
middle one. 

By means of Ax. 1, we prove 
TH. 1: If ASBS, BTCT, and AM(TM)2 are circuits, so also is 
CM (SM)2. 

Expressing the enunciation in the form that if S, T are the mid- 
points of AB, BC, and if M divides AT in the ratio 2: 1, then M 
divides CS also in the same ratio, we see that essentially this is the 
theorem that the medians of a triangle are concurrent. To prove the 
result, we use the relations AM(TM)2=1, BTCT=1 to replace 
A, B in the relation ASBS =1 by M(TM)2 and TCT, and we 
have M(TM)2STCTS =1. Transferring MT to the end of the 
circuit, we have M. TMS. TC. TSM. T = 1; when the interchange 
allowed by the axiom is made in the two triplets TMS and TSM, 
the factor T2 appears twice and can be dropped from each place, 
leaving MSMCMS = 1, the required result. 

For our second assumption we take 

Ax. 2: The total number of line reflections in a circuit must be even. 
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In ordinary geometry this axiom is a theorem, since a succession 
with an odd number of line reflections results in a reversal and there- 
fore cannot end by restoring an arbitrary figure to its original 
position. 

With our two axioms we can prove 
TH. 2: If as, bs, and cs are involutions, so is abc, 
that is to say, three lines which are perpendicular to the same line 
belong to a pencil. The argument is as follows. If a, b, c are supposed 
distinct from s, the assumed involutions are distinct from identity 
and are therefore either points or lines. But as =t would imply 
ast =l, contradicting Ax. 2; the three products are therefore 
points, and from Ax. 1 we have (asbscs)2 =1. Since s is interchange- 
able with a, b, and c, each s is removable and there remains (abc)2 =1, 
as required. 

Another deduction is 

TH. 3: If for any one point R, abcdR is a proper involution, the 
succession abcdZ is a proper involution for an arbitrary point Z. 

For the proper involution abcdR is not a line, since by Ax. 2 there 
cannot be a circuit of the form abcdRt; this involution is therefore 
a point, and combining this point with R and Z we have from Ax. 1 
(abcdR2Z)2 =1, and the result follows on removal of R2. This 
theorem having been established, we can define the direct congruence 
of two crosses in our geometry by means of condition (11) of the 
Table in ? 2, since we know now that this condition represents some 
relation independent of the auxiliary point Z. If b and c coincide, 
the theorem reduces to the form that adRE Q22 implies adZ eQ2, 
which is the analogous basis for the definition of parallelism by 
means of condition (9). That congruence of crosses is a transitive 
relation is the geometrical interpretation of 

TH. 4: If abdcZ and cdgfZ are proper involutions, so also is abgfZ. 
For the proof, we have only to recall again that abdcZ, Z, and 
cdgfZ are three points to which Ax. 1 can be applied, giving 
abdcZ2cdgf Z E 122, and the result follows on the removal of square 
factors. 

We add now 

Ax. 3: If abcRcbaR is a circuit, then abc is a proper involution. 
The premiss of this axiom can be written in the form 

(cba)-lR(cba) =R, 
and expresses that the transform of the point reflection R by the 
operation cba is the point reflection itself, or in other words that R 
is a fixed point of the transformation cba. Now in ordinary geometry, 
cba is a reversal and any reversal which leaves one point fixed is a 
reflection; it follows that cba is a simple reflection, which is the result 
postulated in the axiom, and therefore this axiom also is satisfied in 
ordinary geometry. 
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Our three axioms are sufficient for the proof first that the perpen- 
dicular bisectors of the sides of a triangle belong to a pencil, and then 
that the three altitudes of the triangle belong also to a pencil. 

If A, B, C are the vertices and p, q, r the perpendicular bisectors 
of the sides, we see from (6) of the Table in ? 2 that the concurrence 
of the bisectors expresses 
TH. 5: If BpCp, CqAq, ArBr are circuits, then pqr is a proper 
involution. 

To prove this theorem, we substitute rAr for B and qAq for C in the 
first circuit, which becomes rArpqQqp, and since only cyclic order 
is relevant, the required result is given at once by Ax. 3. 

We turn now to the altitudes. The vertices being denoted by 
A, B, C, the sides by a, b. c, and the altitudes by f, g, h, the sym- 
bolical expression of the result to be proved is 

TH. 6: Six relations of the form (Ab)2 = 1, three of the form (Af)2 = 1, 
and three of the form af e 22, imply (fgh)2 = 1. 

For proof, we remark that since a is permutable with both B and 
C, fBC=fBa2C faBCa; but the product fa is by hypothesis a 
point, and we can apply Ax. 1 to this point and the two which follow 
it, thus replacing faBCa by CBfa2 and so by CBf. Now the con- 
dition (Af )2= 1 implies identically CBAfAfBC = 1, which is there- 
fore equivalent to CBA.f. ACB .f = 1, and by symmetry we have 
also ACB . g. BAC . g = 1, BA . h. CBA . h =. Recalling that the 
products BAC, CBA, ACB are themselves points, we see that we 
have here a set of conditions of precisely the form required for 
the application of Th. 5, and the desired conclusion follows at once. 

Since concurrence in a point is not the same as membership of a 
pencil, there is a different definition of the altitude f, as the line 
satisfying the two conditions (bcf)2=1, af 2, and it may be 
objected that this simpler definition is more natural than the 
definition implied in Th. 6. This is true, but a further axiom seems 
to be required for the deduction of (fgh)2= 1 from the smaller set of 
conditions. A sufficient basis is 

Ax. 4: If abcfghabchgf is a circuit, either abc or fgh is a proper 
involution. 

This axiom, which resembles Ax. 3 but replaces the point R by a 
product of three lines, is valid in ordinary geometry. If now af=fa, 
we have (bcf )2-bcfa2bcf=bcafabcf, and the condition (bcf)2=1 
implies bca==fabcf; similarly from the two conditions (abh)2=l, 
ch E 22 we have abchcabh = 1, that is, cab = habch. But from the two 
conditions (cag)2 = 1, bg E %2 we have in the same way cabgbcag =1, 
and substituting in this relation for the two products cab, boa we 
have habchgfabcfg = 1, which is the premiss of Ax. 4. Thus we have 

TH. 7: If (bcf)2 = 1, (cag)2 = 1, (abh)2 =1 and also af e S2, bg e Q2, 
ch e &2, then either (abc)2 = 1 or (fgh)2 =1, 
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which is the suggested form of the theorem regarding the altitudes, 
since the assumption that a, b, c are the sides of a triangle rules out 
the alternative (abc)2 =1. It should perhaps be added that since we 
have not considered concurrence of f, g, h in either Th. 6 or Th. 7, 
we cannot be said to have dealt in any sense with the existence of 
an orthocentre. 

We introduce now a fifth axiom: 

Ax. 5: If abPQbaQP is a circuit, either P and Q coincide or abQ is a 
proper involution. 
This axiom again is satisfied in ordinary geometry. If P and Q 
coincide, the premiss is satisfied automatically. If a and b coincide, 
the premiss is satisfied automatically and abQ reduces to the proper 
involution Q. If P and Q are distinct, PQ is a definite translation, 
and the premiss, written in the form abPQ =PQab, expresses that 
the congruent transformation ab is commutative with this trans- 
lation. But if a and b intersect and do not coincide, ab is a proper 
rotation and is not commutative with any proper translation; on 
the other hand if a and b are parallel and do not coincide, ab is a 
translation and is commutative with any translation. Thus the 
conclusion required by the axiom is that a and b should be parallel, 
and we see from condition (9) of the Table that this is what is 
expressed. 

Axiom 5, with the four earlier axioms, renders possible the proof 
of a great mass of the theorems of elementary geometry. For 
example, in the geometry attached to any group for which these 
axioms hold: 

A midpoint of a point pair lies always on a radical axis and also on 
a line containing the pair, and these two lines are necessarily perpen- 
dicular; 

Three lines which are parallel or which have a common point belong 
to a pencil 
in the sense of (3) of the Table; 

The bisectors of the angles of a triangle are concurrent.* 
Two examples will suffice to illustrate the application of the last 

axiom. For our first example we take 

TH. 8: If aP, aQ, bP, bQ are all involutions, then either a coincides 
with b or P coincides with Q, 
which is equivalent to the pair of propositions 

Two distinct points have at most one line joining them; 
Two distinct lines have at most one common point. 
The existence of at least one line in the one case and at least one 

point in the other cannot be proved from Ax. 1-5. To prove Th. 8, 
we argue as follows. Since a is permutable with both P and Q, 
PaPQaQ = 1, and similarly PbPQbQ = 1; hence PQ =aPQa =bPQb, 
and therefore bPQbaQPa = 1. This is precisely the premiss of Ax. 5, 
and implies that either P coincides with Q-the second alternative 
in the enunciation of the theorem to be proved-or abQ is a proper 

* Cf. Thomsen, Math. Zeitschrift, 34, p. 712. 
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involution, which, by Ax. 2, is a point reflection T. By hypothesis, 
Q is permutable with both a and b, and therefore abQ = T is equiva- 
lent to Qab = T; the two relations can be replaced by ab = QT = TQ, 
implying that QT is an involution. But if QT is a line c, we have 
abc c2=1, contradicting Ax. 2, and if QT is a point R, we have 
QTR =R2 =1, contradicting Ax. 1; thus QT is not a proper involu- 
tion, and the only possibility that remains is that QT is identity, 
implying ab =1, that is, a =b, the other alternative in the enuncia- 
tion. 

We proceed to a second example of the application of Ax. 5, in 

TH. 9. Let six lines f, g, p, q, u, v be subject to the pencil relations 
(fpv)2 = (fqu)2 = (gpu)2 = (gqv)2 =1, (fgu)2 1 1. 

Then if the further condition fugvZ c t1 is satisfied for an arbitrary 
position of Z, so also is the condition fpgqZ e Q2. 

The pencil relations are those of the sides of a complete quadrangle, 
but the existence of vertices is not assumed. Taking the enunciation 
as referring to a quadrangle in the ordinary plane, we see from con- 
dition (11) of the Table in ? 2 that the sixth condition asserts that 
the cross formed by f, u is congruent with the cross formed by v, g. 
We are, therefore, dealing with a cyclic quadrangle, and the result is 
nothing but the fundamental theorem, which plays so powerful a 
part throughout the geometry of the circle, that the one congruence 
between crosses implies the other congruences which we associate 
with the figure when it is cyclic. A proof of the theorem is as follows. 

From the second condition, u =qfuqf, whence from the third con- 
dition, taken in the form (pgu)2 = 1, 

p gqfu .qfp . gu =1. 
Inserting at the points indicated the three products v2, gvZ2vg, vZ2v, 
each of which is 1, and placingf at each end of the chain, we have 

fpv . vgq . fugvZ . Z . vgq . fpv . Z . Zvguf = 1. 
By hypothesis, in consequence of Ax. 2, the products fpv and vgq are 
lines a, b, and the product fugvZ is a point T; with these substitu- 
tions, the relation last written takes the form abTZbaZT = 1, which 
is that of the premiss in Ax. 5. The possibility T=Z, implying 
fugv = 1 and therefore (fug)2 = 1, is excluded by the enunciation, and 
therefore abZ E 2, that is, fpgqZ E 22, as was to be proved. 

? 5. In our examples of the construction of a geometry from 
axioms, it is to be noticed that there are no assumptions as to the 
existence or unique determination of points and lines; in this 
respect the work is in contrast to Hilbert's Grundlagen der Geometric, where we find as the very first axiom, Two distinct points always 
completely determine a straight line. Certainly a few assumptions as 
to existence and uniqueness are implicit, though unobtrusive, in our 
use of the axioms of group theory. There is moreover a fundamental 
process * by which it is possible to free these assumptions from their 
dependence on the group concept. 

* Cf. Thomsen, Math. Zeitschrift, 34, p. 682, 
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Again, in our axioms there are no questions of order or continuity. 
The ideas of order and continuity can of course be introduced into 
group geometry by fresh axioms; in particular, we can characterise 
the group of congruent transformations in the euclidean plane com- 
pletely by adding three more axioms to those already given. But 
such a complete characterisation of the euclidean congruence group 
by intrinsic properties is not related very closely to our main investi- 
gations. 

Primarily, the examples of the last section are designed to shew 
how a group calculus useful in the treatment of elementary geometry 
can be developed. The aim is, to make the group calculus into an 
instrument so perfect as to take a rival place by the side of cartesian 
analytical geometry. As a method, the calculus of groups is simpler 
than the algebra of cartesian geometry, since the former has only 
one operation, namely, multiplication, while the latter is built on 
addition and multiplication and the operations inverse to these. 
Further, the arbitrariness of the coordinate system at once intro- 
duces extraneous elements into the discussion of any problem by 
cartesian methods, and these extraneous elements have to be elimi- 
nated by a theory of invariants or by some method of vector analysis. 
In the treatment of geometry by the algebra of groups, no redundant 
elements are involved in the calculus itself, and the method appears 
for that reason the fmore suitable. 

Consider for a moment the calculations necessary to prove the 
existence of the orthocentre by cartesian methods. We put down 
the coordinates of the three vertices, and we assume equations for 
the three sides and the three altitudes. We then write down the 
nine conditions of incidence and the three conditions of perpen- 
dicularity, and from our twelve equations we derive the condition 
which implies that the three altitudes are concurrent. As all of us 
are familiar with this kind of algebra from childhood, and some of us 
perhaps equally ready with vectorial methods, it goes without saying 
that we can give very elegant proofs of the theorem. But if we are 
to make a fair comparison between the group calculus and the 
cartesian method, we must take pedantic account of every step in 
the argument and of every application of fundamental rules like the 
distributive law, since the corresponding laws of the group calculus 
modified by our associated axioms are not yet second nature to us. 

Even if in a comparison of this kind a multitude of individual 
examples seemed to tell in favour of the group calculus, we might 
still be far from entitled to speak of a serious rival to the cartesian 
method, which has the essential property of rendering elementary 
geometry "trivial ". Whereas before Descartes every theorem 
demanded for its proof some new idea, some happy chance, as for 
example the drawing of some peculiar lines in the figure, analytical 
geometry provides once for all an infallible means of completing a 
proof in every case in a finite number of steps by diligence and 
routine alone. Even to-day we often encounter the belief that it is 
only on the algebraical side and not in proofs dependent on the con- 
struction and consideration of geometrical figures that we possess a 
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method of rendering geometry in this sense trivial. This is a mistake, 
for with the help of Hilbert's line calculus we can easily transfer the 
trivialisation from the cartesian method to pure geometry. But for 
the majority of theorems, the proofs which have been fitted into 
the framework of Hilbert's calculus are essentially more complicated 
than familiar classical proofs. Naturally a trivialising method 
cannot be expected to give the " best " proof in each individual case. 
Nevertheless, more intimate experience of the whole nature of a 
method which consists in translating the cartesian process into 
terms of pure geometry encourages the belief that some better 
trivialising method must be discoverable. Perhaps the group 
calculus developed in this paper may point the way to the discovery. 
Hitherto the search for a suitable method has not prospered. Need- 
less to say, the cartesian method could be translated into group 
calculus by way of pure geometry, but what is wanted is a better 
trivialising method natural to the group calculus itself. 

? 6. The calculus of reflections can be applied successfully to solid 
geometry. In the group of congruent transformations in space there 
are proper involutions of three kinds, reflections in points, in lines, 
and in planes; these we shall denote by Latin capitals, small Latin 
letters, and small Greek letters (other than E) respectively. Most of 
the positional relations can be expressed very simply. A few 
examples must suffice. 

1. (AP)2 = 1. The incidence relation: the point is in the plane. 
2. ab 122. The lines cut and are perpendicular. 
3. (Ag)2 = 1. The product Ag cannot be identity or a line reflection, 

but the other two kinds of proper involution are possible; if Ag is 
a point reflection, the line g is perpendicular to the plane A ; if Ag is a 
plane reflection, the line g lies in the plane A. 

4. If abZ is a point reflection, for every position of the auxiliary 
point Z, the lines a, b are parallel. 

5. If (ab)2Z is a point reflection but abZ is not, where Z is again 
arbitrary, the lines a, b are perpendicular but do not necessarily 
intersect. 

6. If (gk)2Z is a point reflection but g\ is not, the line g is parallel 
to the plane A. 

7. If (abc)2Z is a point reflection, but abc is not an involution, the 
three lines are parallel to one plane. 

8. If AAv is a point reflection, the three planes are mutually perpen- 
dicular. 

9. If (,\v)2Z is a point reflection, still for an arbitrary position 
of Z, but AXAv is not, the three planes are parallel to one line. 

The three kinds of proper involution in three dimensions can be 
distinguished by intrinsic properties as follows. First the line 
reflections can be set aside as those which are the squares of elements 
of the group. The point and plane reflections together compose a 
class in which the plane reflections can be recognised by the pro- 
perty that a plane reflection forms with some other element of 
this class a product which has period 3, that is, a proper transfor- 
mation which if applied 3 times in succession to any figure restores 

Q 
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the figure to its original place. (With any plane A can be associated 
another plane p. which cuts it at an angle of 60?, and then (Xt)3 =1.) 
It is not possible for the product of two point reflections or of a point 
reflection and a plane reflection to have the period 3. 

If in the way just sketched we form an artificial solid geometry, 
instead of an artificial plane geometry, from the involutionary 
elements of the permutation group used for an illustration in ? 3 
above, we have a geometry with 36 points, 15 lines, and 48 planes. 

Details of three-dimensional geometry will be found in a forth- 
coming paper * by H. Boldt, who gives a complete characterisation 
of the congruent transformations of euclidean space by intrinsic 
properties; the number of axioms needed for this purpose is com- 
paratively small. 

? 7. In conclusion, let us refer again to a defect in the reflection 
calculus. The condition for the steps determined by two pairs of 
points PQ and RS to be congruent cannot be expressed as the 
existence of a circuit involving only the four points P, Q, R, S; the 
circuit must involve at least one arbitrary auxiliary point or line. 
The condition cannot be reduced to a simpler form than: There 
exists some line a such that aPQaRS is a circuit. Similar relations 
have to be used in solid geometry to express the condition that two 
lines intersect and the condition that one pair of planes is congruent 
with another pair. G. THOMSEN. 

936. Je n'ai jamais ete assez loin pour bien sentir l'application de l'algebre 
a la geometrie. Je n'aimais point cette maniere d'operer sans voir ce qu'on 
fait, et il me semblait que resoudre un problime de geometrie par les equations, 
c'etait jouer un air en tournant une manivelle. La premiere fois que je trouvai 
par le calcul que le carre d'une bin6me etait compose du carre de chacune de 
ses parties, et du double produit de l'une par l'autre, malgre la justesse de ma 
multiplication, je n'en voulus rien croire jusqu'a ce que j'eusse fait la figure. 
Ce n'etait pas que je n'eusse un grand goit pour l'algebre en n'y considerant 
que la quantit6 abstraite; mais appliquee a l'etendue, je voulais voir l'opera- 
tion sur les lignes; autrement je n'y comprenais plus rien.-Rousseau, Les 
Confessions, livre VIe. [Per Mr. J. B. Bretherton.] 

937. Quoiqu'il ne fallut pas a nos operations une arithmetique bien trans- 
cendante, il en fallait assez pour m'embarrasser quelquefois. Pour vaincre 
cette difficulte, j'achetai des livres d'arithmetique, et je l'appris bien car je 
l'appris seul. L'arithmetique pratique s'6tend plus loin qu'on ne pense quand 
on y veut mettre l'exacte precision. I1 y a des operations d'une longueur 
extreme, au milieu desquelles j'ai vu quelquefois de bons geometres s'egarer. 
La reflexion jointe a l'usage donne des idees nettes, et alors on trouve des 
methodes abregees, dont l'invention flatte l'amour-propre, dont la justesse 
satisfait l'esprit, et qui font faire avec plaisir un travail ingrat par lui-meme. 
Je m'y enfoncai si bien, qu'il n'y avait point de question soluble par les seuls 
chiffres qui m'embarrassat, et maintenant que tout ce que j'ai su s'efface 
journellement de ma memoire, cet acquis y demeure encore en partie au bout 
de trente ans d'interruption. I1 y a quelques jours que, dans un voyage que 
j'ai fait a Davenport, chez mon h6te, assistant a la le-on d'arithmetique de ses 
enfants, j'ai fait sans faute, avec un plaisir incroyable, une operation des plus 
composees.-Rousseau, Les Confessions, livre V. [Per Mr. J. B. Bretherton.] 

* To appear in Math. Zeit.schrift. 
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