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Analysis of classroom interaction from the combined view of self-regulating 
strategies and discourse analysis: What can we learn? 

Mohd Faizal Nizam Lee Abdullah and Paola Iannone 

University of East Anglia 

The purpose of this study is to investigate the relationship between self-
regulated learning (SRL) and mathematical discourse. The study involved 
a group of Year 9 students in the East of England engaged in 
mathematical tasks. Analysis on the students’ interactions was carried out 
employing two types of analytical tools: Pintrich’s (1999) model of self-
regulated learning strategies, with particular attention to the rehearsal 
strategies, and Sfard and Kieran’s (2001) discourse analysis framework. 
The findings show the emergence of key mathematical concepts during 
the engagement with SRL strategies have positive impact in producing an 
effective and productive discourse among the group members.  

Keywords: Self-regulating strategies, rehearsal strategies, discourse 
analysis, secondary mathematics. 

Introduction 

Our study investigates students’ SRL strategies while engaging with mathematical 
problems. Many studies have been carried out concerning mathematical problem 
solving processes, heuristics, and strategies but there have been few studies 
examining the effect of SRL strategies such as cognitive learning strategies, 
metacognitive and self-regulatory strategies, and resource management strategies on 
problem solving in mathematics (Pintrich 1999).  

We also looked at students’ interactions while engaging with the problems. 
Researchers in mathematics education agree “that mathematics can and should, at 
least partly, be learned through conversation” (Ryve 2004, p. 157). Communication 
has been observed to be an essential element for mathematics teaching and learning 
(NCTM, 1989; NCTM, 2000). NCTM (2000) outlines that a learner who has 
opportunities to engage in mathematical communication including speaking, reading, 
writing, and listening profits from two different aspects: communicating to learn 
mathematics and learning to communicate mathematically.   
 Our investigation linked the students’ SRL strategies with their 
communication. In this particular study, we would like to discuss our preliminary 
findings on the participants’ engagement with one of the component of SRL cognitive 
learning strategies, the rehearsal strategies and the participants’ interactions in our 
attempt to observe mathematical learning via group problem solving. Hence our 
research question is formulated as follow: 

 
 What can we learn from the combined view of SRL and group discourse? 

Theoretical background 

SRL strategies: Drawing from the literature on SRL, Pintrich’s (1999) conceptual 
framework allows us to characterise the various components of SRL during the 
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participants’ engagement with a mathematical problem. The components include 
cognitive learning strategies, metacognitive and self-regulatory strategies, and 
resource management strategies. The elements of cognitive learning strategies are 
rehearsal strategies, elaboration strategies, and organisational strategies. The elements 
of metacognitive and self-regulatory strategies are planning activities, monitoring, and 
regulation strategies The elements in each component are usually not deployed in a 
given temporal order and can be used once or more throughout the problem solving 
process. The third component, resource management strategies are associated to the 
social interaction of the group which involves the commitment to work 
collaboratively to solve the problems. In this paper we have decided to focus on the 
participants’ engagement with the rehearsal strategies as an exemplification of the 
development of the group discourse.      

 In the language context, rehearsal strategies, (Pintrich 1999) “involve the 
recitation of item to be learned or the saying of words aloud as one reads a piece of 
text” (460). Highlighting and underlining text informally is also considered as 
rehearsal strategy. Pintrich (1999) observes that via rehearsal strategies, students will 
be able to attend to and select important information from text. 

 In a group problem solving context, the rehearsal strategies include reading the 
problem and associate it to the relevant mathematics topic or content. The phrase 
‘reading the problem’ refers to a member in the group reads aloud and others listen or 
all the members read in silent individually. This can be observed via their actions or 
utterances during the problem solving process. On the other hand, the phrase 
‘associate it to the relevant mathematics topic or content’ refers to identifying the 
problem and categorising it to the particular topic or content of mathematics. Evoking 
prior knowledge that is relevant to the problem is also an element of rehearsal 
strategies. In addition, the rehearsal strategies can be observed via highlighting and 
underlining important words or phrases stated in the problem. These activities are 
ways for learners to take note of information or hints provided in the problem. 

Discourse Analysis: Sfard and Kieran (2001) developed a theoretical and 
methodological framework “which aims at characterising the students’ mathematical 
discourses while they are working in groups” (Ryve 2006 191). This framework, 
which is also known as communicational approach to cognition provides the platform 
to examine the efficiency and productivity of mathematical discourses. On the issue 
of effectiveness of communication, Sfard and Kieran observe that: 

The communication will not be regarded as effective unless, at any given 
moment, all the participants seem to know what they are talking about and feel 
confident that all the parties involved refer to the same things when using the 
same words.        (Sfard and Kieran 2001, 51) 

In examining the elements of effective and productive mathematical 
discourses, the framework offers two types of analyses: focal analysis and 
preoccupational analysis. On one hand, focal analysis deals with communicative 
successes or failures with no reasons revealed. On the other hand, preoccupational 
analysis offers the reasons behind the success or failure of a communication. Sfard 
and Kieran notice that: 

Focal analysis gives us a detailed picture of the students’ conversation on the level 
of its immediate mathematical contents and makes it possible to assess the 
effectiveness of communication. This is complemented by preoccupational 
analysis, which is directed at meta-messages and examines participants’ 
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engagement in the conversation, thus possibly highlighting at least some of the 
reasons for communication failure.     (Sfard and Kieran 2001, 42) 

SRL and discourse: SRL strategies are found to be one of the factors in 
enhancing students’ academic achievement (Zimmerman and Martinez-Pons 1986). 
Wang et al. (1990) show that high achievement learners engaged more in self-
regulative activities, such as orientation, planning, monitoring, re-adjustment of 
strategies, evaluation and reflection. Apart from SRL, mathematical discourse is also 
vital in the success of mathematical learning: “putting communication in the heart of 
mathematics education is likely to change not only the way we teach but also the way 
we think about learning and about what is being learned” (Sfard 2001 13). 
Unfortunately, literature associating SRL and mathematical discourse together in 
mathematical learning is currently limited. Based on this, the study will focus on the 
combination of SRL and mathematical discourse in a problem solving process. 

The study 

In this paper we present some of the preliminary results of the participants’ 
engagement with the rehearsal strategies (Pintrich 1999) and its influence towards the 
development of the group discourse (Sfard and Kieran 2001) during the problem 
solving process. Most importantly, we will observe the emergence of key 
mathematical concepts and how it contributes to the participants’ interactions. 

We employed video-recordings as our primary data in order to have a close 
examination of the students’ interactions. As Griffee (2005) noted, video-recording 
provides an opportunity to reveal things that might go unnoticed. What is more 
important is that video-recording enables us “to re-visit the aspect of the classroom 
events and pursue the answers we seek” (Pirie 1996 553). 

The study lasted for six months and involved a group of four Year 9 students 
aged between fourteen and fifteen years old at a comprehensive secondary school in 
the East of England. Video recordings focused on the group engaging in mathematical 
tasks set by the teacher (20 – 25 minutes towards the end of the one hour lesson). In 
addition, observational notes were kept and students’ written work was taken into 
account to complement the video data for a more complete record of the actual 
situation. 

A sequence of seven interacting, non-linear phases of Powell et al. (2003) 
model was used to analyse the video data. At the early phases, the process of viewing, 
listening, and describing the video data were carried out. During these processes, 
vignettes or episodes that were critical and significant to the study were recorded. 
This was followed by transcribing the critical events or episodes whereby recordings 
of participants’ utterances and actions were fully transcribed in order to capture both 
what was said and what was done. This was followed by the coding phase whereby all 
critical episodes were analysed employing two different analytical tools: the Pintrich’s 
(1999) model of SRL strategies, and Sfard and Kieran’s (2001) discourse analysis 
framework.   

All episodes were analysed in-depth to scrutinise students’ engagement with 
the SRL strategies while working on the mathematical problem. Cognitive learning 
strategies, metacognitive and self-regulatory strategies were observed during the 
analysis process. In addition, the resource management strategies were also employed 
to scrutinise the social interactions among the participants. The focus of this analysis 
was to observe the SRL strategies used by students engaged in solving a mathematical 
problem. The episodes were also analysed using discourse analysis to capture the 
ways in which students interacted with each other. The focal analysis focused on the 
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coherence of the utterances involving the tripartite foci: pronounced focus, attended 
focus, and intended focus. This was followed by preoccupational analysis employing 
the interactivity flowchart. It focused on how students communicate between different 
channels of communication and different level of talks (Kieran 2001). 

 For the purpose of this paper, the discussion will focus on the role of 
mathematical discourse in the rehearsal strategies phase. We select the rehearsal 
strategies as an illustrative example of the data analysis carried out for this project. 
Finally, we selected the triangle problem as exemplification of a problem solving 
instance that was manageable within the scope of this paper.  

 
This exercise was set to the students as part of a 

lesson on triangles and parallel lines carried out in autumn, 
2008. The students were given the diagram in Fig. 1 and 
asked to find the angles p. q m and n. The content of the 
lesson was on the properties of triangles and parallel lines 
including: (1) vertically opposite angles are equal, (2)  

Fig 1: The Triangle problem 
alternate angles are equal, (3) corresponding angles are equal, and (4) supplementary 
angles add up to 180⁰. In addition, previously, the students were taught about angles 
in polygon, and lines and angles. The following conversation was recorded: 

[1] Megan: n and m are 90. 

[2] Kathy: Are they?...no... oh yeah. (pause for a moment) Hah...they look like 90. 

[3] Megan: So is p 

[4] Kathy & Anne: No, they are 45 (referring to p and q). 

[5] Kathy: Because they are same length. 

[6] Megan: That is what does it... they will be the same, m and p (pointing at m 
and p). 

[7] Kathy: Oh..yeah.. 

[8] Anne: Yes, that is not 90 (referring to n and m)...that means m is 45. 

[9] Kathy: Let start again. 

[10] Anne: m will be 45. 

[11] Kathy: Do n first. 

[12] Anne: Do this first (pointing at p and q). That’s 45 each. 

[13] Kathy: So p and q are 45. 

[14] Megan: They will be equal, right? 

[15] Kathy: Because they got them though (pointing at the two small lines which 
mean equal length). 

[16] Anne: n is definitely 90 (pointing at n). 

[17] Kathy: No, it’s not. 

[18] Megan & Anne: Yes, it is. 

[19] Kathy: No, it is not a zig-zag (referring to the alternate angles between n and 
90) 

[20] Megan: Yeah...it has to be that one (showing the top parallel line with the q-
angle). It has to be like that (as though she is drawing the z). So n is not 90. 
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[21] Anne: Alright... so p, q are definitely 45... Then that would be 45 (pointing at 
m) and that would be 45 (drawing an interior angle on the left of the triangle)... 
because these are the same length 

[22] Kathy: Yeah... 

[23] Anne: So m is definitely 45...and then so is p... and so is q... and then n is 
145... 

[24] Kathy: No. 

[25] Megan: No. 135. 

[26] Anne: Yeah. 

Analysis of the data 

The participants’ interactions can be divided into two parts. In these two parts, we 
observe that the participants are engaged in the rehearsal strategy. The engagement 
with this strategy is seen to have a huge impact on the participants’ quest to solve the 
problem. We observe here the emergence of two key mathematical concepts, the 
‘equal length’ concept and the ‘alternate angles’ concept.  At the early stage of the 
discussion, the participants utilise the ‘equal length’ concept to discuss the unknown 
angles, m, p, and q and later they employ the ‘alternate angles’ concept to focus on the 
value of n.    

From the transcript, we discover that in these two parts the participants evoke 
their prior knowledge to justify their solution or to object to others’ solution. Kathy 
justifies her answer to utterance [4] stating that “Because they are the same length” 
[5]. Her justification is solely based on the diagram of an isosceles triangle provided 
which underlines her prior knowledge of properties of lines and angles. At the later 
stage, Kathy demonstrates that the n-angle and 90-angle are not alternate angles, “No, 
it is not a zig-zag” [19] to oppose the value proposed by Anne [16]. Megan supports 
Kathy’s ideas as she responds convincingly assuring her friends and herself that the 
values for m and p angles are indeed the same [6]. Based on the concept of ‘equal 
length’ and via her demonstration about alternate angles [20] Megan knows which 
two angles are alternate angles. On the other hand, Anne also demonstrates her prior 
knowledge in agreeing with the concept ‘equal length’ but doubts the solution 
proposed by Megan and proposes that the value of m is 45 [8], which is indeed 
correct. In addition, Anne is satisfied with her friends’ justification and agrees upon 
the ‘alternate angles’ concept in obtaining the value of n [21]. 

We observe that during the course of finding the solution for the unknown 
angles, the participants’ tripartite foci are centred on the ‘equal length’ concept and 
the ‘alternate angles’ concept. The emergence of these concepts is vital to the 
discourse as the participants are observed not only justifying their solution using these 
concepts but most importantly has inspired the group members to focus and talk about 
the same mathematical object as shown in Fig. 2. 

 
Megan Kathy 

Pronounced 
Focus 

Attended 
Focus 

Intended 
Focus 

Pronounced 
Focus 

Attended 
Focus 

Intended 
Focus 

[6a] That is what 
does it 
 
[6b] they will be 
the same 

Diagram 
 
 
Diagram 

Solution for m 
and p angles 
 
Solution for m 
and p angles 

[5] Because they 
are the same length 

Diagram Solution for p 
and q angles 

[20a] Yeah… it 
has to be that one 

Diagram 
 

Solution for n-
angle 

[19] No, it is not a 
zig-zag 

Diagram Solution for n-
angle 



Joubert, M. and Andrews, P. (Eds.) Proceedings of the British Congress for Mathematics Education April 2010 

6 

[20b] It has to be 
like that 

 
Diagram 

 
Solution for n-
angle 

 
Fig. 2 shows the analysis of the 

participants’ tripartite foci. Looking 
through the table, we observe that the 
‘pronounced’ focus of the participants 
is centred on the ‘equal length’ concept 
and the ‘alternate angles’ concept. 
Kathy proposes the concept of ‘equal 
length’ to support her solution for p and 

q angles stating that, “Because they are the same length” [5] and employing the 
‘alternate angles’ concept [19] to rule out any possibilities of n equals 90 as proposed 
by Anne. Agreeing to the ‘equal length’ concept, Megan insists that her solutions of m 
and p angles are similar based on the concept ([6a] and [6b]). In another instance, 
Megan not only accepts the ‘alternate angles’ concept but also demonstrates the 
angles involved noting that, “Yeah… it has to be that one” [20a] and “It has to be like 
that” [20b]. In a similar tone, Anne uses the ‘equal length’ concept to determine the 
value of m [8] and applies the ‘alternate angles’ concept to confirm the value of n 
[23].  

The second column of Fig. 2 tells us that the participants share their focus of 
attention as they are observed using the diagram of the triangle as a source of 
information. From the triangle, the participants infer the two key mathematical 
concepts that are relevant to the problem. Consequently, the participants’ ‘intended’ 
focus is to find the value of the unknown angles as required. 

To summarise, we observe that the concepts which are evoked from the 
participants’ prior knowledge, play an important role in guiding the participants’ foci. 
Thus, this produces an effective discourse (Sfard and Kieran 2001). 

 
Fig. 3 shows 

the participants’ 
interaction via the 

interactivity 
flowchart in order to 
observe whether the 
discourse is 

mathematically 
productive or not. 
We can see that the 

participants’ 
interactions are 

interpersonal 
utterances of object-

level communication (Kieran 
2001). This shows that the 

participants are interacting mathematically with each other with pro-action and 
reaction utterances. Nevertheless, the flowchart shows a pattern of discourse which is 
an interesting focus for discussion. 

The interactivity flowchart demonstrates that in certain parts of the discourse a 
formation or a pattern is observed such as a triangular or a rectangular shape 

Anne 
Pronounced 
Focus 

Attended 
Focus 

Intended 
Focus 

[8] that means 
m is 45 

Diagram Solution for m 

[21] Alright 
[23] … and 
then n is 145 

Diagram 
Diagram 

 
Solution for n-
angle 

Fig. 2: The participants’ tripartite foci  
  

 Megan Kathy Anne  Megan Kathy Anne 
[1]      [14] 
[2]      [15] 
[3]      [16] 
[4]      [17] 
[5]      [18] 
[6]      [19] 
[7]      [20] 
[8]         [21] 
[9]      [22] 
[10]      [23] 
[11]      [24] 
[12]      [25] 
[13]      [26] 
[14] 

Fig. 3 Interactivity flowchart of the Triangle problem 
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involving the participants’ interactions, for instance utterances from [5] to [8] and 
from [17] to [21]. A deeper investigation determines that the participants are engaged 
to rehearsal strategy: evoke prior knowledge that is relevant to the problem, with the 
emergence of two key mathematical concepts during these parts of discourse. Using 
these concepts in their interactions, the participants’ interactions are of pro-action and 
re-action utterances which suggests that the participants not only propose a solution or 
an idea but at the same time respond to others. Looking at the pattern formed, the 
participants’ interactions are packed (no open side) with no gaps in between which 
implies that at this moment the participants are interacting not only mathematically 
but also developing a meaningful and productive discourse. 

Unlike the situation above, there are parts of the discourse that have no 
formation or pattern. From the flowchart, the occurrence of non-patterned discourse 
normally happens during the beginning and the ending of the problem solving 
process. This is demonstrated in three different parts: utterances from [1] to [4], from 
[8] to [16], and from [23] to [26]. During these periods, the participants’ interactions 
are basically pro-action or re-action utterance and at the same time no engagement of 
rehearsal strategy is discovered. Thus, the interactions are observed to be loose with a 
lot of gaps in between which suggests that although the participants are discussing a 
mathematical problem no meaningful mathematical discourse took place. 

Discussion and preliminary findings 

In the course of solving the Triangle problem, the participants were engaged in the 
rehearsal strategy: evoke prior knowledge that is relevant to the problem, in order to 
justify the values for the unknown angles. Consequently, this saw the emergence of 
two key mathematical concepts: the ‘equal length’ concept and the ‘alternate angles’ 
concept. These concepts were observed to have a positive influence for the group 
discourse. The participants’ capability to monitor their learning via the application of 
the key concepts had successfully developed an effective and productive discourse. 
The participants’ interactions were focused on the employment of the concepts which 
encouraged the participants to focus their talk on a similar subject, in this case finding 
the solutions using the concepts. Thus, this was also observe to influence the 
participants’ exchanges as the utterances were pro-action and re-action. Remarkably, 
these exchanges created patterns of triangular and rectangular shapes. Consequently, 
such formation showed that the participants were involved in a meaningful and 
productive discourse. We observed that utterances not associated to mathematical 
content such as mathematical concepts had no pattern formation. Thus, this indicates 
that the discourse is non-productive. 

Concluding remarks 

This study investigates what mathematical learning that can be achieved during the 
problem solving process with the participants engaged to the rehearsal strategy and 
discussed the problem as a group. Two different approaches were implemented in the 
investigation. Our approach employs the Pintrich’s (1999) SRL framework for 
investigating the strategies used by students, and Sfard and Kieran’s (2001) discourse 
analysis framework to investigate the effectiveness of verbal communication. Our 
findings suggest that during the participants’ engagement with the rehearsal strategy, 
we observe the emergence of two key mathematical concepts that are not only 
significant to the problem but also crucial to the development of an effective and 
productive discourse. The participants’ interactions involving these concepts can be 
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identified clearly via the interactivity flowchart as the utterances formed a pattern of 
closed triangular and rectangular shapes which suggests a productive discourse. 
Besides that, applying these concepts encourages the participants to focus and talk on 
a similar mathematical object. Thus, this produces an effective discourse.  

To conclude, the combination of SRL and mathematical discourse offers new 
insights into the problem solving process. It highlights the relevance of the emergence 
of key mathematical concepts both as a guide for productive discourse and as an 
outcome of the rehearsal strategy.  
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The Primary Mathematics Specialists – What Do They Think About Teaching 
and Learning Mathematics? 

Barbara Allen 
The Open University 

Abstract 

One recommendation of the Williams Review (2008) was that there 
should be a Primary Mathematics Specialist in every primary school 
within the next ten years. Research with one group of over 100 primary 
teachers following an Open University course suggests that the teachers 
who will be following the Primary Mathematics Specialists Programme 
will face a number of challenges including changes to their beliefs about 
the importance of subject knowledge and their pedagogic practices. 

Introduction 

In January 2010 the first cohort of primary teachers start on a programme of study 
that will result in them becoming Primary Mathematics Specialists. This national 
programme was one of the recommendations in the Williams Review (2008). These 
teachers are expected to emerge from the programme of study with “deep 
mathematical subject and pedagogical knowledge” (Williams 2008, 7). The review 
summarises the aims of the programme as including: 

 
• subject knowledge in all aspects of the mathematics curriculum; 
• solving problems and thinking mathematically; 
• mathematics pedagogy; and 
• working with colleagues to develop practice. (Williams 2008, 18). 

 
The Williams Review criticised the National Strategies and Local Authorities 

for becoming more general in the approach to CPD with ‘subject speciality becoming 
de-emphasised’ (Williams 2008, para. 54). This new programme is an attempt to 
redress this balance by putting mathematics at the centre of teachers’ professional 
development and is being led by universities in association with local authorities. 

The work of Ernest (1989) suggests that in order for teachers to make a shift to 
problem solving in mathematics lessons they need to change their beliefs about 
mathematics, its teaching and its learning. Ernest describes three views of 
mathematics; problem solving, Platonist and instrumentalist. The problem solving 
view includes teachers who see mathematics as dynamic with content continually 
growing. A teacher with a Platonist view see mathematics as a static body of 
knowledge. The instrumentalist view of mathematics is as a collection of facts, skills 
and rules which often have no connections. 

The significance of these views to teaching is that a teacher with a problem 
solving view is more likely to accept pupils’ own methods of solving a problem. 
Whereas someone with a Platonist or instrumentalist perspective would expect pupils 
to find the single ‘correct’ answer to a problem. It is possible that the emphasis on 
numeracy (rather than mathematics) over the last ten years will have encouraged 
teachers with an instrumentalist perspective to be dominant in primary classrooms. 
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This paper is concerned with the beliefs of primary teachers of mathematics. 
In particular, it describes the way that a group of primary teachers view mathematics 
at the beginning of a CPD course.  

Open University CPD provision  

In recent years, the Open University’s Centre for Mathematics Education has been 
running a mathematics course for primary teachers. The course, Developing 
Mathematical Thinking, which predated the Williams Review, is underpinned by a 
philosophy that professional development for teachers needs three interlinking 
strands: 

• subject knowledge; 
• subject related pedagogy; and 
• embedding in practice. 

These three strands are influenced by the work of Shulman (1986) and his 
notion of Pedagogical Content Knowledge (PCK) which is at the intersection of 
mathematics content knowledge and pedagogy. The three elements of the OU course 
are interwoven into the mathematical tasks that the teachers work on collaboratively. 

The Open University course has proved to be highly successful in terms of 
supporting teachers as they improve their subject knowledge and develop their 
pedagogic practices. Anecdotal evidence from the teachers also suggests an increase 
in the attainment of their pupils.  

As part of the Developing Mathematical Thinking course the Open University 
has carried out some research with these primary teachers in order to find out their 
beliefs about mathematics, its learning and teaching.  

Method and analysis 

Data were collected near the start of the course in a written questionnaire. There were 
two forms of items on the questionnaire: quantitative and qualitative. There were 15 
quantitative items with multiple responses based on a Likert scale. For example, Item 
1/9 When I am successful in mathematics, it is because .. had four possible responses 
on a five-point Likert scale: agree mostly; agree a bit; no feeling; disagree a bit; 
disagree mostly. These items were developed by Barbara Allen and John Mason (The 
Open University, 1994) as a means for OU students to profile their own beliefs about, 
and attitudes to, learning and teaching mathematics. The possible responses to the 
items relating to beliefs were designed to extract the teachers’ perspectives in line 
with Ernest’s model: problem solving, Platonist and instrumentalist. The wording of 
the items that were concerned with attitudes had been influenced by previous OU 
work with teachers and learners of mathematics (Ruffell, Mason and Allen 1998; 
Allen and Shiu, 1997). 

The first four quantitative items asked about when the teachers felt they were 
successful at mathematics and how they knew when they understood a topic. The next 
four were the qualitative items and included statements about the teachers’ 
perceptions of mathematics and its learning. The final eleven quantitative items were 
designed to highlight the teaching of mathematics including the role of the teacher, 
how learning happens and perceptions of themselves as effective teachers. This paper 
reports on four of the quantitative items and one of the qualitative statements.  

The analysis of the quantitative items was a simple tally and percentage of the 
total responses. Not all of the teachers completed all the items. The qualitative items 
were sorted into general categories in line with grounded theory approaches.  
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The teachers 

The cohort reported here is from one local authority with over 100 teachers. The vast 
majority of the teachers were female (84%) and most of them were in their twenties 
(42%) or thirties (24%). Their highest educational qualifications were mainly at first 
degree level with 6% having a Masters degree – not necessarily in education. The 
highest mathematics qualification was generally at GCSE (64%) or O level (29%) 
with 7% having an A level.  

We do not have information about why the teachers attended the course: for 
example, whether they were volunteers or were selected by their Headteacher. 

Quantitative Findings 

Data from four quantitative items are reported here and are concerned with the 
teachers’ own experiences of learning and teaching mathematics. 

Teachers’ view of success in mathematics 

We were interested to find out how the teachers viewed their own experiences of 
learning mathematics. For some this would have been many years ago but for many it 
was relatively recent – within 10 years. 
Item 1/9  When I am successful in mathematics, it is because … 
% Agree mostly Agree a bit 
I persevere. 56 48 
I am clever. 6 39 
I follow an example. 45 63 
I am fortunate 3 20 
Fig 1: Teachers own experiences of learning mathematics. 

The teachers were universal in their agreement that they were successful at 
mathematics if they persevered.  But 39% thought that they were also successful 
because they were clever. Does this imply that some of the teachers thought that only 
‘clever’ children could do mathematics? If so, how are these clever children 
identified? How do the teachers work with children who are not clever and do they 
assume they can not be expected to be successful at mathematics? And what do the 
teachers mean by clever? Are the clever children the ones who get the answers 
correct? 

Most of the teachers also thought they were successful if they followed an 
example. This suggests that their experiences of learning mathematics were in a 
‘traditional’ setting where the teacher demonstrates a mathematics technique to the 
class who then complete a series of similar questions. Does this mean that these 
teachers teach in a similar way? If this has been a successful learning experience for 
them then one might assume that they believe that this traditional form of teaching 
would be effective in current primary classrooms. This suggests that a majority of the 
teachers may have an instrumentalist perspective on mathematics. 

Some additional information came from item 8/11 when the teachers were 
asked to what they attributed their pupils’ success.  
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Item 8/11 When teaching I assume that pupils' success is primarily due to ... 
% Agree mostly Agree a bit 
their hard work. 35 61 
luck 0 9 
their natural ability. 14 73 
them being set suitable work. 74 27 
good teaching. 75 29 
Fig 2: Teachers’ attributions of pupils’ success 

 
Most of the teachers appeared to attribute some of their pupils’ success to hard 

work and natural ability. But they were more strongly in agreement that success was 
attributable to them being given the appropriate work with quality teaching. It 
appeared, then, that the teachers felt that their pupils’ success depended mainly on 
their skill as an effective teacher. 

There seemed to be conflicting information here. Whereas the teachers 
attributed their own success in mathematics to perseverance (a personal quality) and 
following an example (a personal strategy) it is not these personal qualities or 
strategies they felt made pupils successful. This appears to be evidence for an 
emphasis on teaching rather than learning. The Primary Mathematics Specialist 
Programme includes an understanding of the ways people learn mathematics which 
suggests it is possible that this shift from teaching to learning could be a challenge for 
some teachers.  

Teachers’ view of teaching mathematics 

The teachers were also asked about their expertise as a teacher and how they 
approached their teaching. These two items produced responses that contradicted 
those described above. The first concerned the teachers’ beliefs about learning 
mathematics and how this impacted on their teaching. 
 
Item 10/11 My approach to teaching is mainly based on a firm belief that …. 
% Agree mostly Agree a bit 
everyone can learn maths if 
only they'd work at it. 

15 47 

some people are naturally good 
at maths and some are not. 

25 57 

I can accelerate learning by 
stimulating and challenging 
pupils. 

76 25 

my job is to get pupils through 
the assessments and SATs. 

7 33 

everyone can learn maths if I 
support and encourage them. 

71 31 

Fig 3: Approach to teaching 
 
Item 8/11 the teachers attributed their pupils’ success in part to hard work 

(35% and 61%) and natural ability (14% and 73%). Item 10/11 gave a different 
perspective with the majority of teachers feeling that some people are naturally good 
at mathematics (25% and 57%) but also that anyone can learn if they have the support 
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of a teacher (71% and 31%). This seems to suggest that the teachers feel that although 
some pupils have natural ability in mathematics anyone can learn mathematics 
provided they work hard and have effective teaching.  

It is, of course, possible that the teachers were giving the answers that they 
imagined the researchers wanted to see. It is also possible that the teachers have never 
before been asked for their perspective on teaching and learning mathematics and 
therefore have not thought through possible answers. 

We also do not know how the teachers interpreted the word ‘maths’. Do they 
see maths as just number or numeracy? Or do they see maths as a larger subject? 

If these teachers believe that their teaching is a major influence on whether or 
not pupils learn then it suggests that they will be supportive of the Primary Specialist 
Programme which aims to improve pedagogical subject knowledge.  

An effective teacher of mathematics 

It seems from previous answers that the teachers felt that one of the keys to success 
was quality teaching but what did they think made an effective teacher? Item 7/11 was 
designed to establish their opinions about how they could be more effective as a 
teacher of mathematics.  
 
Item 7/11 I think I would be a more effective teacher if only …. 
% Agree mostly Agree a bit 
I had more preparation time. 57 40 
pupils were motivated to learn. 26 33 
I had more support. 23 42 
I could spend more time on 
professional development. 

23 51 

I knew more mathematics. 12 46 
Fig 5: More effective teacher 

 
It appears that the teachers believe that they would be more effective teachers 

if they had more preparation time. We do not have any information on how much 
preparation time they currently get or would want. One feature of the Primary 
Specialist Programme is Lesson Study which will involve teachers planning, teaching 
and reflecting on lessons together. This is going to involve a change in the way many 
teachers plan a programme of work for their pupils. 

Time spent on professional development appears to be important to the 
teachers which suggests that they might be supportive of the Primary Mathematics 
Specialist programme.  

The teachers do not see increased subject knowledge as the highest priority. 
This is of some concern since one of the main thrusts of the Primary Specialist 
Programme is the raising of teachers mathematics knowledge. This could be a 
concern to the university providers who will be required to work on mathematics with 
the teachers and increase their subject knowledge. 

Although the quantitative date gave some information about the way the 
teachers viewed the teaching and learning of mathematics, it was the qualitative data 
that added some detail. 
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Qualitative findings 

The open-ended item being reported here asked the teachers to complete the following 
sentence. 

Mathematics is ... …  

It was intended that the responses be analysed in terms of Ernest’s three views 
of mathematics; problem solving, Platonist and instrumentalist. On reading the 
responses it was clear that they could not be sorted into these three groups, instead 
they fell into 4 different categories that were named: affective (38%); real world 
(26%); subject content (24%); and mathematical relationships (12%). Clearly some of 
these categories have links with Ernest’s model and these will be discussed later. 

Affective responses 

A large number of the affective responses were single words like; creative, 
challenging, hard, great, enjoyable, daunting. A few expanded on the single word with 

Mathematics is fun when I get it! 

Mathematics is fun when it is understood. 

Mathematics is good when you understand it. 

Mathematics is difficult when I am expected to provide answers to others. 

The longer responses in this category gave more information. 
Mathematics is finding a way which works for you and working with it to 
succeed. 

Mathematics is fun when I have success and frustrating when I fail. 

Mathematics is taxing because it makes me think and takes me out of my 
comfort zone. 

Mathematics is very challenging for me. I have struggled with maths since being 
in school and that puts up barriers against extending my mathematical 
understanding. 

Mathematics is motivating because there are answers to be found out and the 
possibility of getting it right which feels good. 

Some of the teachers seemed to feel that understanding mathematics was 
important while others linked feelings of success with getting the answers right. These 
affective responses were not part of Ernest’s model but it is possible that getting the 
answers right indicates an instrumentalist view. These responses do not really give 
any indication of how the teachers view mathematics. It seems that the word 
mathematics engendered only an emotional response for 38% of the teachers.  

Real world 

The 26% of responses in this category split into three different sub-groups: those that 
referred to mathematics being everywhere; those that related to needing mathematics 
to understand the real world; and some that regarded mathematics as a skill. 

The responses that were concerned with mathematics being everywhere 
generally consisted of single word responses; essential, everything, everywhere, a 
subject.  

A number of teachers made comment about needing mathematics in order to 
make sense of the real world. 
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Mathematics is making sense of the world through generalising patterns to solve 
problems. 

Mathematics is using numbers to explain the world. 

Mathematics is learning skills, knowledge and concepts to help you undertake 
tasks in the real world. 

Mathematics is an important life skill. 

These responses suggest an awareness of the uses of mathematics outside the 
classroom. They do not however give any indication that the teachers can see 
connections between the topics in mathematics. The teachers giving real life 
responses did not seem to be displaying an instrumentalist view of mathematics.  

Subject content  

The responses in this category mentioned the content of mathematics.  
Mathematics is working with numbers and patterns. 

Mathematics is the knowledge, understanding and application of number, shape 
and concepts to do with these. 

Mathematics is a combination of facts and figures. 

Mathematics is an understanding of number. 

Mathematics is the ability to calculate values. 

Mathematics is problem solving, number concepts, patterns, collecting data, 
understanding measures. 

Some of the statements overlapped with those in previous categories. These 
were placed in the subject content group because that was the overriding issue.  

Mathematics is learning rules, patterns and examples about numbers, shape, 
space, measures and using them to solve problems that will help in our everyday 
lives. 

The responses in this category suggest that these teachers see mathematics 
consisting only of school mathematics. Only a few made links to the use of school 
mathematics in everyday life. Schoenfeld (1988) criticised the school curriculum for 
only introducing learners to a subset of mathematics, namely school mathematics. It 
seems from these findings that some of the teachers were only aware of this subset of 
mathematics. The teachers giving a subject content response appear to have an 
instrumentalist view of mathematics but it is not known if they also display signs of a 
Platonist view. 

Mathematical relationships 

The 12% of responses in this category talked about making links between 
mathematical concepts and recognising relationships. Some of the responses 
recognised links between areas of school mathematics while others were concerned 
with the big picture of mathematics. 

Mathematics is making connections between different elements of number, shape 
and space, algebra etc. to work out a given problem. 

Mathematics is making links between many ideas of number and shape. 

Mathematics is spotting patterns and solving problems. 

Mathematics is understanding number patterns and their relationships. 
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Mathematics is making connections. 

Mathematics is understanding concepts and applying them to different contexts. 

For many mathematics educators, mathematical relationships are at the core of 
the subject. Although most of the teachers’ comments in this category contained the 
word ‘link’ or ‘relationship’, a number of them still only cited these as existing within 
the subset of school mathematics. The teachers giving these responses appear to have 
more of a problem solving view of mathematics.  

What next? 

Ernest’s (1989) model appears to suggest that the teachers with a problem solving 
view of mathematics are the most effective. There is little evidence from this cohort 
of primary teachers that they view mathematics in terms of problem solving. It seems 
that in order for them to become effective teachers of mathematics they will need to 
shift their view of mathematics from Platonist or instrumentalist to one of problem 
solving.  

By the time that BMCE starts in April 2010, the first cohort of teachers will 
have embarked on this programme. We will have greater information about who the 
teachers are and their own knowledge of mathematics. The findings in this paper 
suggest that for primary teachers, mathematics engenders an affective response rather 
than a clear view of how they see mathematics.  

The challenge to the universities and local authorities involved in this 
programme is to facilitate teachers to change the way they view both the teaching and 
learning of mathematics in order to raise the attainment of their pupils. This paper 
suggests that the providers of the programme will also need to challenge the way the 
teachers view mathematics as a subject. 
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Acknowledging the cultural dimension in research into mathematics teaching 
and learning 

Paul Andrews 

University of Cambridge 

In this review paper I make a plea for those involved in research into the 
teaching and learning of mathematics to acknowledge that however their 
work is framed, it will be located in a culture, not always visible to their 
readers, that needs making explicit. In order to do this I first examine 
three key models of culture and their significance for education. Secondly 
I consider various models of curriculum and ways in which school 
mathematics is presented. Finally, I summarise some recent comparative 
research in mathematics teaching showing substantial variation in the 
ways in which teachers manage the presentation of mathematics in their 
classrooms. In so doing a plea to researchers is framed: Culture permeates 
all aspects of educational endeavour and should be acknowledged more 
explicitly than it is.  

Introduction 

The purpose of this review paper is to invite researchers in mathematics education to 
acknowledge, in the theoretical framing and reporting of their work, the manner in 
which culture pervades all aspects of education in general and mathematics education 
in particular. Consequently, without wishing to over-assert what I feel is an important 
point, educational research should not be conducted independently of an 
acknowledgement of such influences. Having said that, culture is a difficult construct 
to define, although the consensus seems to be that it is, essentially, a collective 
manifestation of psychological conditioning and can be construed as a societal 
analogy to individual memory (Triandis and Suh 2002). Culture embodies the 
“implicitly or explicitly shared abstract ideas about what is good, right, and desirable 
in a society” (Schwartz 1999: 25). Culture includes those beliefs, artefacts and 
practices that history has shown to be effective for the maintenance of a society and 
its future generations (Hofstede 1980, Triandis and Suh 2002). In summary, cultures 
are social, historical and behavioural constructions that reflect the “collective mental 
programming” of their people (Hofstede 1980: 43). Through the educational 
transmission of their embedded traditions, values, beliefs, knowledge and skills, they 
ensure their continuing replication. In the following I consider three features of 
culture and show, in various ways, how they impact on the opportunities to learn 
students receive. These are various models of culture and how they shape educational 
systems, models of curricula and their culturally derived expectations, and a selection 
from the mathematics education literature highlighting the extent to which culture 
influences classroom practice and related constructs. 

Models of culture 

A number of researchers have attempted to categorise the ways in which cultures 
differ, and it is to them that we first turn. Hofstede's well known study initially 
identified four dimensions of culture. The first, power distance, concerns the extent to 
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which followers accept being led. “A society’s power distance level is bred in its 
families through the extent to which its children are socialised toward obedience or 
toward initiative” (Hofstede and McCrae (2004: 62). The second, uncertainty 
avoidance, relates to the extent to which “a culture programs its members to feel 
either uncomfortable or comfortable in unstructured situations” (62). The third is 
individualism, or the “degree to which individuals are integrated into groups”. Lastly 
there are masculine as opposed to feminine cultures. Masculine cultures “strive for 
maximal distinction between what men are expected to do and what women are 
expected to do”. With respect to education, Hofstede's has shown how his four 
dimensions of culture can predictably explain variation in educational practice, not 
least through their impact on differences in the social positions of teachers and 
students, curriculum relevance, cognitive expectations, and differences in the patterns 
of participant interactions (Hofstede 1986). Others have exploited Hofstede's 
dimensions in the framing and interpretation of their work. In a study of 43 countries 
concerning class size, Cheung and Chan (2008), for example, found that cultural 
norms associated with power distance and collectivism had more significant impact 
on decisions concerning class size than economic factors. 

Triandis (2001) has proposed an eleven dimensional model of culture, which, 
by way of brevity, is presented without discussion. Cultures differ in their complexity; 
for example, cities are more complex than villages. Cultures differ in their tightness; 
loose societies tend to be more tolerant of diversity and non-conformist than tight 
cultures. Cultures differ in their perspectives on the individual and collective. For 
example, tight and simple cultures tend to the collectivist. They differ in their 
verticality and horizontality, where the former are more accepting of hierarchical 
differences than the latter. There are active and passive cultures. In the former people 
try to mould their environment to suit them and tend to be more competitive. 
Universalist cultures differ from particularist cultures in that any suitably qualified 
person is eligible for a job. In diffuse cultures people are judged holistically while in 
specific cultures they are not. Ascriptive cultures judge according to an individual's 
attributes while achievement cultures judge them on their achievement. In 
instrumentalist cultures social activity is subordinated to work, while the opposite is 
found in expressive cultures. Cultures may be emotionally expression or emotionally 
suppressive. Lastly, the extent to which norms concerning physical contact varies. As 
with Hofstede's work, such characterisations help us understand the role of culture in 
framing humans' day-to-day actions and decision making in general and the conduct 
of education in particular. 

With particular regard to education, Schwartz (1999), examined elementary 
teachers' and undergraduate students' education-related values and, drawing on data 
from more than 40 countries, identified seven dimensions of culture including 
conservatism (embeddedness), hierarchy, mastery, autonomy, egalitarian commitment 
(egalitarianism), and harmony. Thus, with respect to culture and education, for 
example, a conservative culture which emphasises the “maintenance of the status quo, 
propriety, and restraint of actions or inclinations that might disrupt the solidary group 
or the traditional order” would structure educational opportunities very differently 
from an autonomous culture in which an individual finds “meaning in his or her own 
uniqueness, who seeks to express his or her own internal attributes (preferences, traits, 
feelings, motives) and is encouraged to do so” (Schwartz 1999: 24). Importantly, not 
only for justifying his choice of research subjects but also for highlighting the 
significance of culture in this discussion, Schwartz (1999: ) writes that teachers were 
chosen for his study because they “play an explicit role in value socialisation”, are 
likely to be “key carriers of culture, and... reflect the mid-range of prevailing value 
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priorities in most societies”. 

Culture and curricula 

The curriculum, according to the second international mathematics study, comprises 
intended, implemented and attained forms. However, what is frequently missing from 
such discussions is the extent to which historical and cultural forces have shaped the 
development of the curricula, in all its forms, of different countries. A number of 
researchers have attempted to categorise the manner in which curricula come into 
being. One example can be found in the work of Holmes and McLean (1989), who 
summarise four curricular traditions. The first, Essentialism, is linked primarily to 
English education and refers to the liberal arts curriculum of the late mediaeval 
English public1 school, its replication in early models of public education, and its 
rejection of science and engineering as subjects studied by gentlemen. Cummings 
(1999: 423) describes the public school as “a boarding school with many rules, 
mandatory chapel, an emphasis on mind and body, which included daily athletics,... a 
strong classical thrust in the curriculum, and so forth”. The second, Encyclopaedism, 
is generally linked to post-revolutionary France and draws on Enlightenment 
principles that education should include all human knowledge, be accessible to all and 
free from superstition (Cummings 1999). The third, Polytechnicalism, is linked to the 
Soviet Union and its satellites and incorporates notions of vocationalism into an 
essentially encyclopaedic model of knowledge located in a socialist moral philosophy 
(cummings 1999). Lastly, Pragmatism, is linked to the United States and addresses 
the acquisition of the knowledge and skills necessary for tackling real world problems 
of a participative democratic. Inevitably, despite their crudity and blurred edges, such 
models help explain why, for example, why French teachers present an intellectually 
sophisticated mathematics in comparison to the intellectually simplified mathematics 
presented by their English colleagues (Jennings and Dunne 1996). 
In similar vein, Cummings (1999) writes that all curricula are based on cultural 
constructions of the ideal person, which, in the light of the discussions above, vary 
considerably from one culture to another. His analyses led him to conclude that most 
modern educational systems are derivatives of the traditions of six core curricula – the 
Prussian, Russian, French, English, Japanese and United States. Drawing on a range 
of factors, he offers a compelling account of not only the development of these six 
traditions but also the ways in which they have influenced curricula world-wide. In 
respect of three of these six core nations, Pepin (1999) has argued that the English 
tradition, with an emphasis on personal morality, has had an anti-rational humanist 
core privileging intuitive knowledge over the systematic construction of knowledge. 
With regard to the French tradition she writes that the post-revolutionary principles of 
égalité and laïcité facilitated the removal of social inequalities through a common 
broad curriculum and the expectation, unlike in England, that pastoral and moral 
issues will be addressed by the family. Lastly, the German humanistic tradition, 
                                                
1 As BCME readers will know, the English public school is an elite, usually very old, independent 
school. They employ competitive entrance examinations and are frequently so popular among the 
wealthy classes that parents may have to register their desire for their child to attend shortly after the 
child's birth. They are steeped in tradition and continue, as they have for many centuries, to furnish the 
higher ranks of the English civil service, the clergy, the judiciary, around half of all students at the 
leading universities of Cambridge and Oxford, and, of course, a disproportionately high number of 
members of parliament. Despite the name, they should not be confused with the public school systems 
of other countries, which, in England, is known as the maintained sector. 
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drawing on notions of Bildung1, incorporates both encyclopaedic rationalism as well 
as moralism in its unified promotion of academic and moral education. Such views 
lead to the equal valuing of academic and practical knowledge as found in the 
tripartite structure of German schools. 

Of course, the extent to which such underlying principles and traditions are 
manifested in the written, or intended, presentation of curriculum mathematics may 
vary from one country to another. By way of illustration, three European perspectives 
on the teaching of linear equations at the lower secondary level are presented below. 
Choice, in this respect, was constrained by the availability of curricula in English, 
while the topic was determined by other work on which I am currently engaged. They 
are presented alphabetically and, in respect of linear equations, verbatim. 

The Finnish national curriculum2 for grades 6-9 asserts that students, by the 
end of grade 8, “will know how to… solve a first degree equation”. 

The Flemish mathematics curriculum3, expects students in the first grade of 
secondary education to “solve equations of the first grade with one unknown and 
simple problems which can be converted to such an equations”. During the second 
grade they will “solve equations of the first and second degree in one unknown and 
problems which can be converted into such equations”. 

The Hungarian curriculum4 for grades 5-8 (upper primary) writes that in year 
5 students should “solve simple equations of the first degree by deduction, breaking 
down, checking by substitution along with simple problems expressed verbally”. In 
year 6 they should “solve simple equations of the first degree and one variable with 
freely selected method”. By year 7 they should “solve simple equations of the first 
degree by deduction and the balance principle. Interpret texts and solve verbally 
expressed problems. Solve equations of the first degree and one variable by the 
graphical method”. Lastly, by year 8 students should “solve deductively equations of 
the first degree in relation to the base set and solution set. Analyse texts and translate 
them into the language of mathematics. Solve verbally expressed mathematical 
problems” 

In these three examples can be seen very different perspectives on a core topic 
of the lower secondary curriculum. The Finnish specification is loose and offers little 
in terms of how content should be interpreted and presented at any specified moment 
in the four year cycle. The Flemish appears more tightly specified although the shift 
from one year to the next, in respect of linear equations, seems vague. The main 
difference lies in the explicit expectation of problems to be translated into equations 
for solving. Lastly, the Hungarian curriculum offers a tightly specified progression 
over a four year period with methods and problem solving, including word problems, 
increasingly exploited. While not wishing to over-speculate, it is interesting to 
compare such specifications with three of Hofstede’s (1986) dimensions. When 
compared with other developed European nations, he presents Finland as low power 
distance, low uncertainty avoidance and a strong tendency towards the feminine. This 
contrasts with Belgium (not just Flanders) as not only substantially higher than 
Finland on power distance and uncertainty avoidance but also among the most 
                                                
1  According to Prange (2004) Bildung is a broad concept that does not translate easily, but is 

“something noble and undeniably good... Bildung is much better than mere education, or 
Erziehung, to give the German word. It is associated with liberty and human dignity, whereas 
education is associated with teaching skills and morals” (Prange 2004: 502). 

2  See http://www.oph.fi/english/publications/2009/national_core_curricula 
3  See http://www.ond.vlaanderen.be/dvo/english/ 
4  See http://www.okm.gov.hu/letolt/nemzet/kerettanterv36.doc 
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masculine of the developed European nations. Unfortunately, Hungary is not 
represented in Hofstede’s analyses as they derived from data collected before the 
countries of Eastern and Central Europe joined the capitalist world. However, there is 
some evidence here of the ways in which cultural norms and characteristic patterns of 
social behaviour find a voice in the curricular presentation of mathematics. 

Culture and mathematics teaching 

As indicated above, teachers are proxies for an educational system’s values and there 
is growing evidence that mathematics teachers in one country behave in ways that 
identify them more closely with teachers in their own country than teachers 
elsewhere. Much of this research draws on the perception that "teaching and learning 
are cultural activities (which)... often have a routineness about them that ensures a 
degree of consistency and predictability. Lessons are the daily routine of teaching and 
learning and are often organised in a certain way that is commonly accepted in each 
culture" (Kawanaka, 1999: 91). This sense of routine predictability has been variously 
described as the traditions of classroom mathematics (Cobb et al, 1992), the cultural 
script (Stigler and Hiebert, 1999), lesson signatures (Hiebert et al, 2003) or the 
characteristic pedagogical flow of a lesson (Schmidt et al, 1996). The latter embodies 
the pedagogical strategies which, through repeated enactment, are typical of a 
country’s lessons, routine, and beneath the consciousness of most teachers (Cogan 
and Schmidt 1999). Explanations for such patterns draw on beliefs that cultures 
"shape the classroom processes and teaching practices within countries, as well as 
how students, parents and teachers perceive them" (Knipping 2003: 282), to the extent 
that many of the processes of teaching are so "deep in the background of the 
schooling process ... so taken-for-granted… as to be beneath mention” (Hufton and 
Elliott, 2000: 117). 

In this regard, there is a growing body of research highlighting substantial 
national variation not only in the ways in which teachers act out their roles but also in 
the resources available to them. For example Kaiser et al. (2006) have offered 
persuasive summaries of the distinguishing characteristics of English, French, 
German and Japanese mathematics teaching, particularly in respect of proof and the 
structural properties of mathematics. The two TIMSS video studies have examined a 
range of teacher practices in Australia, the Czech Republic, Hong Kong SAR, the 
Netherlands, Switzerland, the United States and Japan. Huegener et al (2009) have 
focused on differences in the ways teachers present the theorem of Pythagoras in 
Germany and Switzerland, while Santagata (2005) has highlighted substantial 
differences in the ways in teachers handle students’ mathematical errors in Italy and 
the US. Campbell and Kyriakides (2000) and Haggarty and Pepin (2002) have shown 
how school texts reflect differences in systemic expectations and traditions. An et al. 
2004) have identified culturally located differences in teachers’ mathematical content 
knowledge, while Correa et al. (2008) have done the same for teachers’ mathematics-
related beliefs. Finally, although it is acknowledged that the scope of this paper 
presents an extensive review, it is important to acknowledge the Learner’s Perspective 
Study. In this respect, Clarke and his many colleagues have contributed much to our 
collective understanding of differences in the ways in which mathematics teachers 
around the world construe their roles (Clarke et al 2006a, 2006b). 

With regard to my own and my colleagues' work, we have examined the ways 
in which teachers present mathematics to students in the age range 10-14 in England, 
Flanders, Hungary and Spain. The episodes of videotaped lessons were coded against 
a framework developed iteratively and collaboratively over the course of a year 
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(Andrews 2007a), where an episode was that part of a lesson in which the teacher's 
observable didactic intention remained constant. In terms of teachers’ observable 
learning objectives, the project found (Andrews 2009a) that teachers in all four 
countries privileged the development of both conceptual procedural knowledge in 
high and comparable proportions. The major variation lay in the other outcomes. For 
example, Hungarian teachers placed a higher emphasis on the structural properties 
(links within and between topics), mathematical efficiency (comparing solutions 
strategies for elegance and efficiency), problem solving and reasoning than elsewhere. 
In similar vein, English teachers were rarely seen to encourage structural links or 
efficiency. Such differences reflect not only differing curricular expectations but long 
standing mathematics teaching norms. The same study (Andrews 2009b) found, in 
relation to the observable didactic strategies employed by teachers, that teachers 
explain regularly and in comparable proportions irrespective of country. However, all 
other strategies distinguished between the didactical practices of project teachers. For 
example, Flemish teachers were exploited explicit motivational strategies in smaller 
proportions than elsewhere, while Spanish teachers employed them in over half of all 
observed episodes. English teachers very rarely questioned (used higher order 
questions) while Hungarian teachers did so constantly. Spanish teacher coached - 
offered hints and suggestions to facilitate their students’ successful completion of 
given tasks - in more than three quarters of observed episodes, while teachers 
elsewhere did so in equal and significantly smaller proportions. Hungarian teachers 
invited students to share publicly their solution strategies in almost every episode 
while teachers elsewhere did so consistently at around the 60 per cent level. 

Of course, cultural emphases do not end with learning outcomes and didactic 
strategies. In a comparison of Hungarian and English mathematics teachers’ beliefs 
Andrews and Hatch (2000) found that while English teachers valued the systematic 
decorating of their classrooms with examples of students’ work or mathematical 
posters, such practices were alien to Hungarian teachers who tended to work within 
classrooms with, essentially, bare walls. In a second study Andrews (2007b) found 
English teachers espousing collective beliefs about the value of school mathematics 
lying in its applicability to a world beyond school, while Hungarian teachers 
articulated a collective belief whereby the value of mathematics lay within 
mathematics itself. In short, the ways in which teachers conceptualise and present 
mathematics to their learners, the environments they create and their beliefs as to the 
nature and importance of the subject highlight well that mathematics teaching, in all 
aspects, is a cultural activity that differs significantly from one country to another. 

Final appeal 

In conclusion, my appeal to colleagues researching any aspect of mathematics 
teaching and learning is that they make explicit in the reporting of their work the 
cultural context in which it was undertaken. Too frequently research is reported with 
no indication, other than the authors’ designation, of a study’s location. Moreover, 
and I know I am equally to blame in this regard, writers assume when synthesising the 
literature, that generalities derived from a study undertaken in one cultural context are 
generalisable to another. That is, when constructing the theoretical frames within 
which we conduct our research, too frequently we ignore the cultural implications 
embedded in the studies we analyse. Such assumptions, that literature can be 
synthesised independently of context, may lead to poorly designed and reported 
studies. 
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Can Australians Mark KS3 Mathematics Exams? A Study in Cultural 
Differences 
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Highly experienced Australian teachers (N = 38) marked a sample of the 
2006 KS3 mathematics exams, following similar training to their 
counterparts in the United Kingdom. Results indicated that were able to 
mark at a very high standard, but experienced a number of difficulties in 
doing so.  Marking diaries revealed that a number of cultural differences 
existed concerning quality control, the number of questions marked, the 
different emphases attached to calculation accuracy, mathematical 
processes and conceptual understanding. 

Introduction 
High stakes examinations have for a long time been controversial. A major criticism 
of such examinations is that they lead to restricted teaching practices, as teachers are 
often found to teach-to-the test (Barksdale-Ladd & Thomas, 2000). In more recent 
times the marking of examinations has also become highly controversial. No more so 
than in the United Kingdom where the delayed marking of Key Stage 3 (KS3) 
examinations led to a Parliamentary inquiry and ultimately the closure of the National 
Assessment Agency (NAA). Nevertheless, key government agencies, such as the 
Qualifications and Curriculum Authority (QCA) have recognised the importance of 
examination marking and commissioned a number of studies to investigate marking 
accuracy across a number of national curriculum tests (see QCA, 2009). This paper 
reports on one such study on the marking of KS3 mathematics (Baker et al., 2006). 
The main purpose of this paper is to report on cultural differences in mathematics test 
marking. It also reports on marking accuracy from a cross-cultural perspective 
(Australian v English markers) and the use of different marking locations (Home v 
Centre marking). 

There has been a multitude of international studies investigating cross-cultural 
differences in mathematics performance and the underlying factors.  Of great 
significance has been the ongoing international comparative research conducted by 
the various TIMSS and the PISA studies, which have investigated a wide range of 
issues related to the teaching and learning of mathematics (see Clarke, 2003). In these 
studies marking accuracy has not been a focus of investigation but a major technical 
concern. In the original TIMMS study, the designers recognised the need for marking 
(scoring) validity on free response items (Beaton et al., 1996). Hence scoring rubrics 
were developed and training sessions conducted to achieve a high rate of reliability. 
As part of this process studies were completed that compared markers on common 
scripts both within and between countries. For later TIMSS studies as well as PISA 
2000 and 2003 similar strategies were used (see OECD, 2005). It was found that high 
rates of consistency could be achieved within and across the different countries that 
participated provided extensive training was provided. However, there were some 
variations found particularly on specific items. Although these studies have reported 
these findings, the underlying reasons behind these variations have not been 
investigated because the researchers’ main aim was to achieve marking consistency. 
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This present study aimed to explore potential cultural reasons why there might 
differences in marking accuracy other than human error. To achieve this, Australian 
mathematics markers, chosen because of similarities between the two countries, were 
required to mark a sample of the 2006 KS3 mathematics exam (already marked and 
graded) under the same training conditions as their English counterparts. Their 
marking accuracy was then compared with the English markers. Furthermore as a 
secondary comparison, the markers were divided into two groups where one group 
marked at home and a second group marked at a common centre. To collect 
information on why marking differences might occur, the Australian markers kept 
diaries that documented their experiences and perceptions about the marking process.  

Method 

Participants 

The study included 38 participants (F=21 and M=17) with an average age of 51.3 
years from Sydney (Australia) or neighbouring towns. Thirty-two were currently 
teaching mathematics in a high school, three were recently retired from school 
teaching, and three taught mathematics at the tertiary level. Overall teaching 
experience in secondary schools was 26.5 years, with a mean marking experience of 
state examinations of 10.3 years. The participants were recruited because they were 
highly experienced and were paid market rates for state examination marking. 
Markers were randomly assigned to either the Home or Centre group. 

Instruments and study procedures 

The examination papers marked were copies of the 2006 KS3 mathematics tests, 
which had already been marked in England. All examination answer booklets were 
“cleaned” to ensure that no English markers’ comments or marks were visible to 
Australian markers. A survey instrument collecting marker background information, 
such as demographic data and prior related marking experience, was developed.  

Pre-training day materials 
Prior to the training day, participants were mailed the Teacher Pack (QCA, 2006) that 
was identical to the pre-training package sent to the mathematics markers in England 
for the 2006 KS3 mathematics exam. The Australian markers were required to mark 
the five training scripts using the marking schemes prior to the training day. 

The training day  
Both groups undertook a 4-hour training session. During this time, an English 
Marking Trainer worked through the marking schedule using the 5 training scripts. 
On specific answers the trainer would emphasise certain aspects of the marking 
scheme, and explain why the correct mark should be 1 rather than 0, and vice versa. 
Such points often led to a discussion between the markers and the trainer. The 
meetings concluded by the markers filling in the survey and being given the following 
handouts, with instructions: a) a sheet to record the times spent marking and the 
number of scripts marked during these times; b) a marking journal, consisting of a 
number of sheets to record their thoughts as they marked; c) The Edexcel 2006 Key 
Stage 3 Mathematics External Marking: Commentary for Training Scripts  

The following set of instructions for marking the box of 90 scripts was also 
provided: a) the scripts will be marked in Batches of 10; b) for the first batch of ten 
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you are required to sort the 10 scripts into separate bundles of the four tiers with the 
lowest tier first. For each tier you mark each question separately (E.g., all questions 1 
in the tier, all questions 2 in the tier, and so on); c) For each remaining batch of ten, 
mark all papers 1’s in the batch of ten in the exact order of the given sequence, mark 
all papers 2’s in the batch of ten in the exact order of the given sequence, mark all 
mental maths papers in the batch of ten in the exact order of the given sequence; d) 
bundle each batch of ten with the rubber bands keeping the same order within the 
bundles and keep the bundles in the correct overall order. These marking instructions 
were provided to ensure a common approach to marking and that the correct order of 
script marking was maintained. In order to follow the English marking procedures as 
closely as possible and also to control some of these variables, it was decided to insist 
that the first 10 scripts were to be marked by sorting into tiers and then marking 
question by question. In this way, the first 10 scripts would act as further training and 
consolidate marker familiarity with the marking scheme.  

Home and centre marking 
At the conclusion of the training day, home markers took away their scripts. They 
were instructed to return them within 11 days, after having completed all 90 scripts or 
marked for a maximum of 20 hours. They were also instructed to contact the English 
Marking Trainer if they needed any advice in interpreting the marking scheme. Centre 
markers did not take their scripts home. For each day they attended, the relevant 
boxes were given out to the markers who took them to the designated marking room. 
At the end of each session, each completed bundle of ten scripts was collected and 
stored in a separate area. For each of the scheduled sessions, all the markers marked 
in one room, where the English Marking Trainer was present to answer any enquiries. 

Results 

Marking accuracy 

In terms of marking accuracy there was no significant difference between the Central 
and Home markers. Furthermore, no differences were found between the Australian 
and English markers. However, marking accuracy was not the main focus of this 
paper and is reported elsewhere in more detail (see Baker et al., 2006).  

Marking rates 
The mean number of student scripts marked was 85.3 for the Home markers and 79.9 
for the Centre markers. Mean times spent marking were 22.3 hours for the Home 
group and 19.0 hours for Centre markers giving mean marking rates of 3.9 and 4.2 
respectively. Under a t-test there was no significant difference in marking speeds 
between the two groups, t (35) = 1.27, p = 0.21.  

Patterns of marking in the Home group 
 Whereas the Centre markers were highly regulated in their marking patterns (Five 4-
hour sessions), the Home markers were very much left to devise their own routines. 
Analysis of their Marking records revealed the following statistics. The group 
completed an average of 12.6 separate marking sessions: the highest being 24 and the 
least 7. On average a session lasted 1.9 hours. Whereas some markers were highly 
systematic in their approach (e.g. 11 sessions of 2 hours), others were far more 
irregular (e.g. 0.25, 4.25, 2, 1, 0.5, 0.75, 0.5, 1, 0.75, 1, 1.75, 2.75, 5.25 and 1 hour). 
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Generally Centre markers preferred to mark over small periods of time with 
substantial breaks.   

Marking Journals Themes 

Thirteen centre markers and 17 home markers returned their completed journals. 
These data were analysed using a simple content analysis technique. From each 
marker’s report, a list of raw concepts (issues) was identified. If more than one marker 
documented the same issue then a frequency count was kept. Concepts with a 
common theme were then grouped together to form a category. For example, markers 
identified the ‘tomatoes’ and ‘red kites’ questions as difficult to mark. As a result both 
these questions were classified as members of the category named—Factors 
influencing speed and accuracy. Altogether, seven categories were identified: 
Training, Difficulties Interpreting the marking scheme, Positive aspects of the 
marking scheme, Factors influencing speed and accuracy, Comments on student 
performance, Increases in marking speed and Recommendations. 

Training 
A number of markers (n = 10) were concerned that they did not receive enough 
training, particularly home markers (n = 8), often referred to as ‘Domestic’ markers. 
One marker reported that too much time was spent arguing the pros and cons of the 
marking scheme rather than accepting it and moving forward. Four markers also 
expressed the view that having no quality control was disconcerting, affecting 
confidence and marking accuracy. Three observed that there was value in markers 
getting together to discuss the marking scheme, and one suggested that as a 
consequence the Centre markers would be better off. Several markers commented that 
reporting to a Senior Marker would have been beneficial, rather than working un-
supervised. The following are some of the comments made: 

In Australia, ‘domestic’ markers still have the opportunity for clarification by 
discussing with their senior marker or with other team member via phone.  Also, 
(there is) opportunity for this as you return boxes to the SM. In this study we were 
instructed not to communicate so some inconsistencies in applying the marking 
scheme are likely. (H11) 

There doesn’t appear to be any quality control of what is happening with Home 
markers.  Consequently I could mark very quickly but not accurately. (H13) 

Explanations that are “grey” – would be easy to get a “ruling” if senior markers 
there – can seem trivial to ring about one little thing.  E.g. Is diagonal of enlarged 
square root (100) or root (200) student said “ because” root (100) would show that 
the diagonal line and the side are the same length” seems reasonable but doesn’t 
fit the manual.  Will ring when I have another query as well. (H14) 

A longer briefing session or 2nd sample marking with a follow up meeting to 
discuss differences would have been beneficial. (H16) 

The process is very different as we are not being check-marked along the way – 
feedback as to how consistent I am marking would be helpful, although not really 
necessary as this marking does not effect the student’s mark on the paper. (C8) 

Difficulties Interpreting the Marking Scheme 
A number of issues were reported in this category. Five markers reported that 

the marking scheme was far too complex and could have been simplified, with four 
reporting that summary information would have been useful. H16 commented in 
detail on this: 
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Sometimes there is a lot of “jargon” to sift through in the “correct response” / 
additional guidance within.  For example, Paper 1 p24 / 25, there is a lot in their 2 
pages and if you want markers to keep speed up, maybe these guidelines need to 
be more concise / with a “tone” explained by what you are looking for. Checking 
up on some of the detail slows you down. We usually mark via 1) the solution and 
2) rubric of intent from the people who set the exam not essays to be read through. 

Eight markers believed that the scheme often penalised students who did not 
fit the expected answers and this made such scripts difficult to mark. Markers often 
reported that they felt students should have got a mark for correct working, but were 
unable to give it. For example H10 reports, “All the working is shown for Paper 1, 
Q1, but because no addition sign, therefore zero”. Other similar comments on this 
theme included over-pedantic penalisation of marks for currency (£7.1, not given a 
mark), incomplete processing (7/2, no marks), substituting the wrong decimal symbol 
and probability (7 out of 10, no marks). Three markers thought that the scheme was 
inconsistent overall, sometimes ignoring an error that they had previously penalised. 
A possible explanation for this perception was the different emphases placed on 
conceptual and processing errors on specific questions. Three markers reported 
finding the idea that correct processing can be worth no marks given certain 
conceptual errors disturbing, as the following comments illustrate: 

I find the notion of “conceptual” errors a new one - one which was hard to 
stomach in some questions where a student lost 2 marks even though they knew 
the process.  E.g. Q11 Paper 1 tier 3 – 5 (H11) 

Students drilled will more than likely leave out the “carry 7” How often do you 
write down your “carries” I never do.  We penalise the better students here in the 
“design” of the question (i.e. the working is in the question).  Do they know that 
they lose marks if they don’t write the “7”? Do they know to show all the 
multiples etc? (H16) 

There were other clashes in ‘culture’ reported. For example, three reported 
some difficulty with penalising a subsequent error. For example, if a student gave an 
answer as 21/4 and then incorrectly simplified to 5.1 this would be marked correct at 
the Higher School Certificate (HSC). It is worth noting that for HSC marking, there 
are acronyms that are widely used to express this situation, either CNE (correct 
numerical expression) and/or ISE (ignore subsequent error), although it should be 
pointed out that the HSC involves far more complex problems for older students. It 
was often voiced in personal anecdotes but not widely reported in the journals, that 
many believed that the English system looked to take away marks, rather than reward 
them. One marker reported that it was difficult following the marking scheme because 
of the underlying ‘foreign’ philosophy, another commented:  

The method of marking seems at odds with the way we mark in NSW e.g. 
marking complete paper as compared to marking a question, we look to give 
marks rather than deduct. (C10)  

Three markers argued that the emphasis seemed to be on the final answer 
rather than the working, although a counter example reported by one marker was that 
the simultaneous equations question required working for a mark even though a 
correct answer might be given. Two markers reported that there were such subtle 
differences in some answers that they wanted to be free to make more judgements 
themselves, as the following quote illustrates: 

There was just some very subtle difference in some answers that were awarded 0 
or 1 mark i.e. “multiples of 4 are even” and “4 is an even number” needed to use 
‘judgement flags’ and would have liked to have the option where I felt the student 
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was more correct than wrong – but their option was not on the answer sheet. 
(H17) 

Finally, again illustrating the clash in cultures, two markers reported that a 
difficult aspect of the marking scheme was that it was predetermined and they had no 
part in its development and consequently no ownership. 

Positive Aspects of the Marking Scheme 
In contrast to the difficulties outlined above, there were some positive aspects of the 
marking scheme recorded, although not as many. However, six (5 home markers) 
reported that they found the comprehensive nature of the scheme very helpful. Two 
such comments were as follows: 

The mark scheme for all the papers was excellent.  I liked the “minimally 
acceptable explanations” and the “incomplete or incorrect explanation.”  It 
certainly made the marking scheme easy to understand. (H6) 

Marked question by question (tiers 3 – 5) slow and laborious but starting to get a 
handle on the marking scheme (in particular the detailed guidelines given). I can 
see the need for the extra detail – particularly as a home marker. (H19) 

Factors Influencing Speed and Accuracy 
Responses on this theme were very similar. Twelve markers stated that there were far 
too many parts (questions per examination question, examination papers and tiers) to 
mark, interfering with their ability to remember the scheme and their marking 
confidence. Seven pointed out that the sheer number of pages to be turned was 
detrimental to speedy and accurate marking. Although not reported in the journals, 
anecdotal evidence suggested that an additional factor was the stapling of the scripts 
together, which made the flipping from page-to-page cumbersome. In contrast, the 
original student booklets were more user-friendly. Furthermore, four reported that if 
they discovered one of their own errors, it was again highly time-consuming to look 
back over previously marked scripts. Typical comments were as follows: 

Very slow having to turn pages so often – impossible to keep all the marking 
schemes in my head as we do in HSC marking. (H3) 

The marking of different papers and different tiers meant that I couldn’t get into a 
flow of marking.  Consequently I feel that I’ve probably made many more 
mistakes than I am used to. (H13) 

Remembering such a huge number of options makes marking incredibly slow. I 
also found it difficult to remember the tables and was slowed up by having to 
check continually. (C1) 

Another major factor to influence speed and accuracy was the number of 
questions that required written explanations. Fifteen markers made this point directly 
or nominated particular questions that were most problematical. Chief amongst these 
were the questions labelled ‘red kites’ (n = 9), ‘tomatoes’ (n = 8) and ‘odd or even?’ 
(n = 4). Three markers added that they were very different types of questions to what 
they were used to.  In addition, some non-explanation problems were also nominated 
as difficult to mark, such as ‘five cubes’ (n = 5), which required a number of 3-D 
perspectives. 

Further, some markers (n = 4) reported that it was difficult to mark Tier 6-8 
because they appeared so infrequently, particularly later questions, which many 
students did not try, and therefore they did not have sufficient exposure to get used to 
them. Finally, a major detriment to marking was the readability of the student scripts. 
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Eleven markers reported that there were many cases of poor photocopying/scanning 
which made it difficult or impossible to read. Two such comments were as follows: 

The indication that the question is worth 2 or 3 marks is good. Unfortunately, the 
extra line for marks was often missing due to the scanning process. (C1) 

MA803 Paper 1 Q8 Matching – too many crossed out – may have been different 
colours on the original, impossible to mark. (H10) 

It was also reported that sometimes the markers guessed the student response, 
or simply left that question unmarked. 

Comments on Student Performance 
A number of observations were made about student performance on the examination. 
Generally, comments were not flattering. For example, individual markers reported 
that students were not good at the number plane, indices, simplifying fractions, 
Pythagorean theorem, graphs and circle geometry. More consensus was reached on 
algebra (n = 3), although one marker qualified this assessment by stating except Tier 
6-8 students. Four markers highlighted English communication skills as a problem. 
Two made the assessment that some students were entered in too higher tiers, and two 
thought the standard overall was poor. In contrast, individual markers expressed the 
view that students were used to explanation questions, they were better at some 
content than others, they were very good at Q20, Paper 1 (Tier 3-5), and one reported 
enjoying students answers. Other observations included identifying common student 
errors on questions involving ‘powers of 5’ and ‘three dice’. 

Marker recommendations 
A few markers made some recommendations mostly connected to splitting the 
marking into parts (n = 3) or marking only one tier (n = 3). One marker reported that 
it would be better to mark all of one tier first, before starting the next one. One marker 
also observed that the present format would be best marked corporately (at a centre), 
while one believed that a multiple-choice section would effectively cater for a number 
of the questions asked. 

Conclusions 

The information recorded in the journals indicated that the markers had experienced 
some difficulties on this task. Many felt, particularly home markers, that they did not 
initially receive enough training. Furthermore, a lack of further training or quality 
control had impacted on their confidence and ability to become adjusted to the 
marking scheme. Clearly, the task of marking whole exams, across 4 tiers, was very 
alien to their own marking experiences. The sheer number of pages to be turned in 
both student scripts and the marking schemes impacted on their speed and accuracy, 
as well as the sheer number of parts to become familiar with. Furthermore the 
Australian teachers reported that they would have liked more involvement in the 
development of the actual marking schemes, as ‘ownership’ was considered 
important.  These findings indicate that the marking methods used by the KS3 
markers may not be best practice. 

Aspects of the marking scheme also took some adjustment. Different 
emphases on calculation accuracy, mathematical processes and conceptual 
understanding often created the perception that the marking scheme was inconsistent 
overall. Furthermore a high number of explain-type questions was also culturally 
different to their own experiences and led to difficulties in awarding marks. Other 
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positive aspects included the recognition by some that the marking scheme was very 
thorough and that some of the questions were creative and useful to the markers’ own 
teaching practices. However, despite many reservations it was found that experienced 
Australian mathematics markers could adapt and successfully mark KS3 exams. 

Finally this study may have some implications for the broader theme of 
assessment. Much of the research into assessment has focused on the importance of 
formative assessment and task selection, and not how such tasks are marked. It is 
clear that some items in the KS3 test were designed to test more than just facts. Yet 
the Australians had some difficulty marking particularly questions that emphasised 
conceptual processes despite being familiar with standards-based marking and 
formative assessment. Their methods of marking such questions were different, and 
they often felt the English method was more punitive. Here was a clear cultural 
difference where both countries could possibly learn from each other. It also suggests 
that providing good assessment tasks need to be backed up by equally good marking 
schemes in order to provide appropriate feedback.  It is therefore suggested that 
further cross-cultural research into marking may be useful in supporting the bigger 
picture of assessment reform. As Clarke (2003) observed, assessment itself warrants 
more international comparative research.  
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Developing a leading identity across the transition to mathematically demanding 
programmes at university 

Laura Black  

University of Manchester. 

In a previous paper (Black et al. 2010) we drew on interview data with AS 
level mathematics (post-16) students to present the concept of ‘leading 
identity’ which, we argued, defines the student’s motive for study and 
shapes their relationship with mathematics.  We argued that whilst some 
students might focus on a leading identity of ‘being a student’ and thus, 
engage with the activity of ‘studying’ merely to gain qualifications, others 
focus upon ‘studying’ with a vocational future in mind and thus attend to 
the ‘use value’ of mathematical knowledge beyond the institution of 
schooling. In that paper, we presented the story of Mary, a student 
studying AS level Use of Maths, who had a leading identity of ‘becoming 
an engineer’. We argued that this leading identity gave her enough 
motivation to persist in studying mathematics where others might have 
dropped the subject. In this paper, we wish to explore the sustainability of 
this leading identity for Mary as she experiences transition from college to 
university.  We now have five interviews with Mary which cover the 
period from the start of her AS level studies to the end of her one year 
Foundation Degree in Mechanical Engineering at university. In telling 
Mary’s transitional story, we ask: how does Mary experience transition in 
light of her ‘leading identity’? And how does this affect her relationship 
with mathematics? Furthermore, we also seek to understand how Mary’s 
transitional story is positioned within the landscape of cultural narratives 
about transition available to her.  

Keywords: transition, leading identity, advanced mathematics 
 
Theoretical background 

In theorising Mary’s transitional story we draw on Cultural Historical Activity 
Theory (CHAT) which focuses on transition and development in terms of 
movement between object orientated and socio-culturally mediated activities 
(Leont'ev 1981; Beach 1995, 2003).  This line of theory implicates the construct of 
‘identity’ since individual development is seen as a process of ‘becoming’ 
someone new – in line with their participation and transition between activities. As 
with many theorists, we recognise identity as multi-faceted and socially situated in 
practice or activity. Given the scope of activities we engage with on a regular 
basis, we have many different identities to draw on at a given moment in time. We 
refer to identity as our reflective understanding of who we are in relation to a given 
activity (Williams, Davis, and Black 2007); one ‘becomes’ what one ‘does’ and, 
importantly, one comes to ‘think’ what one ‘says’ through reflexivity. For 
example, we construct our identity as a mathematics learner upon reflection on our 
engagement in various forms of mathematical activity in the past. Thus, our notion 
of identity (or identities) is historical in origin and emerges from the subjectivities 
(how one views oneself) we experience in the process of doing activities.    
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 In seeking to explore the notion of ‘transition’, we draw on the work of (Beach 
2003) who emphasises the need to consider participants relation to transition – and the 
relationship between the different forms of activity they are transiting between. He 
provides us with a typology of different types of transition – of relevance here is 
‘lateral transition’ – involving the individual’s movement between two historically 
related forms of activity in a linear direction. Thus we can see students move from 
schooling to university and eventually to the workplace as a lateral transition since a) 
individuals move through these activities in a fairly linear fashion (albeit with some 
exceptions e.g. returning to education after a period of work) and b) these forms of 
activity are historically connected through the positioning of education (both 
schooling and university) in terms of its ‘value’ as preparation for future labour 
(Williams 2008). Participation in one form of activity is superseded and replaced by 
activity in another and some notion of progress is embedded in the individual’s 
transition. (Beach 2003) argues that by acknowledging the unidirectional nature of an 
individual’s lateral transition between activities (and the sense of progress and 
development which goes along with that) – we can begin to understand the ways in 
which students might engage with mathematical knowledge differently as they 
experience transition from schooling to ‘working’.  
 Furthermore, (Beach 2003) argues that the notion of ‘leading activity’ is an 
important methodological tool in terms of understanding transition both in terms of 
individual progression and in terms of macro level change (these two are entwined in 
such a way that you cannot have one without the other). He draws on (Leont'ev 1981) 
to define leading activity and its role in development suggesting that human life 
“is not built up mechanically ... from separate types of activity. Some types of activity 
are leading ones at a given stage and are of greater significance for the individual's 
subsequent development, and other types are less important. Some play the main role 
in development and others a subsidiary one. (1981, 95) Thus, we might argue that 
schooling is a leading activity since for many it plays a significant role in our 
development. Nevertheless, what counts as ‘significant’ is not merely defined in terms 
of the individual but “is as much to do with whether it is leading or not as the societal 
sequence of activities. It is in this way that activities mediate between large-scale 
societal change and the local coupling of individuals with activities.” (Beach 2003, 
125) It is from this framework that we developed the notion of leading identity in our 
previous paper (referred to earlier). We argued that the identity made available by 
one’s leading activity at a given moment in time is a leading identity. This reflects a 
hierarchical organisation of motives in understanding the self and directs the 
organisation of all other identities available. For example, we might suggest that 
Mary’s leading identity as ‘a student wanting to become an engineer’ hierarchically 
subordinates the other identities she constructs and which are available to her (e.g. 
being female). 
 However, whilst this approach places emphasis on the students' motive for 
engaging with mathematics – it should be distinguished from constructs such as 
‘motivation’ and ‘goal orientation’ which have also been referred to in the literature 
(e.g. (Dweck 1986). The latter reflect types of behavioural approaches in relation to 
task (e.g. mastery goal orientation, performance avoidance etc.) which are internal to 
the individual and appear generalisable across tasks. A CHAT approach on the other 
hand, places motive in the dialectic between individual and the activity (along with its 
socio-cultural and historical baggage). For instance, students’ motives for studying 
mathematics are often defined in terms of the ‘grades’ they can achieve and the 
‘status’ such grades bring in what is apparently an elite subject. However, this motive 
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is only made relevant by the activities which take place in mathematics classrooms 
(e.g. cramming for tests) and the wider institutional discourses in which they are 
situated. 
 
Methodology and Data Analysis 
This data comes from two connected projects. The first investigated students’ 
participation in post compulsory mathematics education (aged 16-17 years) in 
England with the aim of comparing two Advanced Subsidiary (AS) level 
programmes: Mathematics and Use of Mathematics with a view to understanding how 
pedagogy impacts on students’ dispositions towards studying mathematics, and 
electing to study mathematically demanding courses, (e.g. Science, Technology, 
Engineering etc.) at university. As part of this project, we conducted interviews with 
40 students focusing on their background history, their experiences with mathematics, 
career aspirations and disposition towards future study. 

(http://www.education.manchester.ac.uk/research/centres/lta/LTAResearch/tlrp/) 
 The second project is currently investigating how students experience 
mathematics education across the transition from A-level to mathematically 
demanding degree programmes at university. It looks to explore how such 
experiences interact with students’ background social factors (e.g. class, gender etc.) 
to shape learning outcomes, identities, dispositions, and the key choices made 
surrounding transition into university. Mary was a participant in both of the above 
projects so we have 5 interviews spanning a period of 3 years.  

(http://www.lta.education.manchester.ac.uk/TLRP/summary.htm) 
 Mary’s interviews have been analysed using narrative analysis. This draws on 
the work of Bruner (1996) who emphasises the importance of narrative not only in 
construing how we understand ourselves in the world but also the ‘reality’ in which 
we operate.  Thus, we present our students’ interviews as biographical narratives, 
made up of inter-connecting sub-stories which can then be connected (or 
disconnected) through a reformulation process. The latter involves the identification 
of a central ‘plot’ within or across a number of interviews and sub-stories told by the 
student are considered in terms of their proximity to this (Goodson and Sikes 2001). 
On this occasion, we have used the constructs of leading activity and leading identity 
as the central plot. A leading activity is identified where we see a significant shift in 
the student’s motive to engage with a particular activity or others like it and where 
this shift in motive is implicated as significant in shaping the student’s trajectory. This 
can be seen within a particular sub-story the student recounts where s/he reflects on 
the shift in some way or it may be more apparent when comparing sub-stories 
regarding the same activity(ies) at different points in time (i.e. between two different 
interviews). The construct of leading identity can be identified where the student 
makes ‘I statements’ pertaining to the afore mentioned leading activity. Identity 
statements may refer to either their state of being (in the past, present or future) (e.g. I 
am, I will be, I was etc.) or themselves in action (e.g. I do, I got, I will do). The use of 
leading activity and leading identity to formulise a central plot means that our analysis 
connects the sub-stories students tell to present the ‘whole story’ as it emerges across 
the interview(s). Inevitably, some sub-stories told within the interviews are not 
included in our analysis; we have selected data which is of significance to the overall 
plot (i.e. the student’s leading identity).  
 
Mary’s Story: Prior to University 
In our previous paper, we presented Mary’s earlier experiences and attitudes towards 
education and mathematics as a ‘canonical’ story which was shared amongst a small 
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number of students in our sample (5 out of 40 students). This story was identified as 
‘when troubles come, aspirations remain the same’ and in Mary’s case, we told of her 
leading identity of becoming an engineer which enabled her to persist with studying 
mathematics despite various troubles (i.e. being placed in a low GCSE set, dropping 
statistics at AS level (Use of Maths) due to likely failure). We argued that this leading 
identity emerged out of Mary’s engagement with her GCSE Engineering programme 
(Double Award) during which she undertook various design projects (the leading 
activity). Mary, herself, identified such projects as crucial in shaping her aspiration to 
become an engineer and spoke of how this experience developed an awareness of her 
‘needs’ as a student (‘I like hands on stuff’) and her future potential self.  

“That whole process [making something from scratch] and that accomplishment 
and that feeling I got, I loved it and I just thought I really want to keep that and 
be part of it. One of my dreams is to do something massive, and be like, “Yes, I 
did that” 

 In our previous paper, we argued that Mary’s relationship with mathematics 
was shaped by the motive provided by her leading identity of becoming an engineer. 
Thus, she spoke of its use value in an engineering context in addition to its exchange 
value in terms of the grades she might obtain and it was this perception of the use 
value of mathematics which enabled her to persist with the subject even in the face of 
potential failure. This contrasted with other students in the sample who were more 
focused on the exchange value their grades could provide and who spoke of dropping 
mathematics and adjusting their aspirations in the face of similar troubles.  
 
Mary at University 
We catch up with Mary near the end of her Foundation Degree in Mechanical 
Engineering. She is attending X University, although this was not her original choice 
(more on this later), after obtaining 140 UCAS points through her A-level results. As 
in previous interviews, Mary remains highly committed to engineering as a career, 
although her aspirations have become a little more refined. Nevertheless, she remains 
keen to keep her options open and see what options a mechanical engineering degree 
might provide: 

“You know maybe do aeronautical. I wasn’t, I’m still not 100% sure because 
there’s a lot of choice in the stuff— […] But I think what I was going to do was 
stay with mechanical engineering and do maybe a Master’s in aeronautical 
aerospace you know, something like that.  

 However, whereas before university Mary struggled to gain the grades she 
needed/wanted, she now describes herself as a successful student. She tells us she is 
maintaining ‘a B or A sort of level’ which ‘is good and a bit surprising’. On her mid year exam 
she tells us she gained an A/A- and describes the transformation ‘From like D’s and E’s to 
like an A so I was kind of like, ‘ok.’ ‘I thought they did a mistake’. Thus, we can see a distinct 
transformation in Mary’s identity from struggling to successful student.  
 This change in Mary’s narrative seems quite counter intuitive – given her 
troubles at A and AS level and the perceived importance of A-level grades for entry 
and performance at university, we might expect her to present a more troubled 
account of her move to university. However, as mentioned above, transition from one 
organisation to another can be an affordance for an individual in that they experience 
becoming someone or something new (Beach 2003). Indeed, as Beach argues a sense 
of progression is embedded in uni-directional, lateral transition since it this principle 
which historically connects the two organisations concerned (in this case, school and 
university). The sense of a new beginning for Mary was certainly evident in her 
interview data where she tells us of the changes in her identity that she has made: 
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“….getting onto the course, getting onto it I think wasn’t hard but doing it was a 
bit of a different manner. I had to change my whole attitude where I thought, ah, 
maybe I’m not gonna be that good, or you know, looking at my past grades this is 
crap you know, but I had to kind of change my attitude and think, ‘wait, this is a 
new start’.  

 Here, Mary comments ‘I had to kind of change my attitude’ which suggests 
she felt her ‘new start’ was a necessary part of her transition in order that she progress 
in line with the activities she participates in.  
 
Leading identity and transition to university 
When asked why this change has come about, Mary directly implicates the motive 
derived from her leading identity in the narrative. She tells us: 
 “I think it was just because I finally knew what I wanted to do. […] I’ve always wanted to do a sort of 
Maths and I knew I liked making things[…] I can’t wait to get my job and you know, call myself an 
engineer. It’ll be such a great moment in my life I think.” 
However, as noted above, this motive is not solely the product of Mary’s past 
experience but is also partly located within the structure of the activities and 
institutions with which she engages.  As such, Mary talks of her progression in terms 
of finally finding a place where she belongs – a place where her perceived potentiality 
aligns with the motive generated by the activities which constitute her engineering 
course. This sense of belonging comes through most strongly in her description of her 
relationship with her fellow students on the Foundation degree:    

 “Yeah, I’ve got very nice guys who I hang out with […] it’s really nice to kind of 
have that support from you know, really good friends to have that support from 
them, and you can see that they’re the kind of people that really wanna get 
somewhere on the course, and it’s really nice to have that.” 

 When asked why she thinks they are such a good group of people to work with 
she tells us: “I think cos they all wanna get somewhere in their lives. […]And we’re all kind of there 
for the same reason, so that kind of brings us together.” 
 Thus, Mary tells of belonging to a community of participants who engage in 
the same activities with the same motive in mind – for Mary, her leading motive is 
now shared with her fellow students (i.e. knowing where they want to go in life) -  a 
community generated by the engineering activities which make up the Foundation 
Degree programme. Thus, we see what appears to be a dialectic relationship between 
Mary’s leading identity and her sense of ‘togetherness’ with the community and 
activities which constitute her course. On the one hand, she is able to find this sense 
of togetherness precisely because she has a leading motive to become an engineer but 
simultaneously, the alignment of her leading motive with the activities and 
community which constitute her course further resources her leading identity and thus 
her motive for studying (‘I can’t wait to get a job..and call myself an engineer’).  
 
Leading identity, transition and Mary’s relationship with mathematics 
So does this transition bring about a new relationship with mathematics for Mary? In 
our earlier analysis, we highlighted how Mary’s motive to ‘become an engineer’ 
shaped her relationship in a way which enabled her to perceive the use value of 
mathematics beyond the walls of the classroom. Yet there was an apparent 
contradiction in Mary’s account between this notion of use value which she saw as 
powerful in terms of her future as an engineer and the limited exchange value which 
her low grades provided in the here and now (at AS level). We argued that this 
represents wider conflicts within the education system with the current emphasis on 
‘performance’ in mathematics being mostly disconnected from its eventual ‘use’ in 
the labour market (Williams 2008). However, Mary’s transition to university has 
resolved this conflict in some sense -  Mary is now a successful student and therefore, 
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her positive relationship with mathematics is not just framed in terms of its use to her 
future but also draws on a new identity – that of, successful student. – “ [I’m] suddenly 
getting good grades without even trying sometimes”. As such, we might suggest that Mary 
feels a new sense of alignment between the exchange value her ‘good grades’ provide 
and the use value of the mathematics she is learning. This is referred to in the 
quotation above where she suggests that doing the kind of mathematics she likes (‘the 
maths behind the designing and making’) is one reason for her new success in the 
subject.  
 
A sense of alienation in developing and maintaining a leading identity 
However, although Mary’s transition to university may be seen as a fairly positive 
story –  her interviews contained repeated  references to a family narrative regarding 
her ‘designated future’ and the sequence of leading activities which this implicates. 
Mary comes from an immigrant Pakistani family which she describes as: “we have a 
very backwards sort of family. It’s a very Asian sort of, you know, girls should stay at home to do the 
cooking— […]Where the guys go out and work.” Thus she suggests that a more acceptable 
sequence of leading activities under this narrative may be seen as ‘schooling followed 
by motherhood/domestic work’.  
 On the one hand, Mary speaks of her resistance to this expected sequence of 
activities. She speaks of having to convince her parents and her sister that ‘Engineering 
was something I’ve always wanted to do’ and informs us that ‘my step-granddad he doesn’t agree with 
it still.’ But she tells us ‘… I’ve just started to ignore him now because it is just, I’m so happy doing 
this course…’ So Mary tells us that her trajectory of ‘becoming an engineer’ has 
implicated resistance to a designated identity laid out in her family narrative. 
However, a sub-story regarding why she chose to go to X university and therefore, 
undertake a Foundation Degree (involving an extra year of study) rather than go to her 
first choice of institution, suggests that this resistance has created tensions for her.  
Mary tells us that she felt X university would have better resources (‘flight 
simulators’ and an ‘aeroplane cut in half’) which she was not sure her first choice of 
institution would have (having never visited it). She then tells us 

“and then I thought about my grades and how you know, obviously I didn’t do the 
Maths and stuff and I’ve heard from my older sister, who had friends who did 
Engineering—[…] Quit the course because they found the Maths too hard […] and I 
thought to myself well if I spend an extra year kind of getting used to it then 
hopefully I have two years to kind of be good. […] It kind of took me to, I kind of, 
wasn’t really pushed but I was more kind of towards X university anyway. […]So I 
went with X university instead.”  

 
 So it seems that in order to sustain her leading identity of ‘becoming an 
engineer’ Mary is required to negotiate and even subordinate the various other 
identities available to her (e.g. being female and Asian).  Mary’s account of why she 
ended up at X university provides evidence of this – she has reached a compromise 
with her family by ‘staying near home’ (thus fulfilling her family’s wishes & being 
the dutiful Asian daughter) whilst still pursuing her engineering dream. Thus, to some 
extent she seems aware that her leading identity of ‘becoming an engineer’ 
necessarily implicates alienation from the culturally normative expectations her 
family holds for her as an Asian female. Nevertheless, Mary resists the idea that the 
‘Foundation Year’ is a ‘cost’:  

“Yeah I thought to myself taking an extra year would that make me look dumb, 
would that you know, just waste my time or something but, doing the actual 
course I found that, you know I actually needed it cos I thought if I go into first 
year not knowing what integration is and differentiation was—[…] Then I’ll be 
really stuck.” 
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 Thus, in some sense, the compromise she has made with her family has 
provided access to mathematical knowledge (integration and differentiation) which 
she sees as necessary for her future studies and it has provided a slower pace to her 
progression and perhaps even eased her transition to university.  
 
Conclusion 
In this paper, we have highlighted the transitional story of one student, Mary, as she 
progressed from school/college and into university. We have shown that, by adhering 
to a particular leading identity (becoming an engineer), Mary has found a deeper 
motive to the activity of studying. For Mary, studying is not simply about gaining a 
qualification but rather it is seen as preparation for the next stage of her life – working 
as an engineer. We have argued that the motive provided by her leading identity may 
be resourcing a positive transition providing her with enough confidence to make a 
new start. Therefore, we feel Mary’s story makes a valuable contribution to previous 
research on student learner identities. This has tended to explore the identities of 
highly successful students on mathematically demanding courses in elite institutions 
in Higher Education (Solomon 2007; Brown and Macrae 2003) or has provided 
generic accounts of transition which do not specifically focus on mathematically 
demanding courses and the role mathematics plays in transition (Ball, Maguire, and 
Macrae 2000).  
 Running alongside our representation of Mary’s transitional story, we have 
highlighted Mary’s ongoing relationship with mathematics which is framed in terms 
of its use value to the activity of ‘doing engineering’ both inside the classroom 
(education system) and in the workplace. This appears no longer disconnected from 
the ‘exchange value’ her mathematical knowledge provides. The question we might 
then ask: is how can we encourage students to find ways of understanding their 
leading identity and its relationship with ‘studying’ as an activity? How might we 
encourage students to reflect on their motives for study? And consequently, how 
might we help them to see the ‘use value’ of mathematics? 
 Additionally, we have also argued that Mary’s transitional story is embedded 
in wider cultural narratives about future aspirations and the sequence of and relations 
between leading activities which such narratives adhere to.  Mary expresses a desire 
to follow a normative pathway by moving from schooling into the workplace (both 
can be classed   as leading activities). Furthermore, in describing this pathway she 
draws on a liberal humanist stance suggesting she has ‘choices’ (and thus agency) 
which she makes on the basis of what she ‘enjoys’. But this jars with her family 
narrative (and possibly the sequence of leading activities which may be expected of 
her in that narrative i.e. schooling – domestic work - motherhood). Ultimately, it 
seems that she has to negotiate this narrative and we have shown in the data how she 
has sought a compromise in ‘doing engineering’ in a way that appeases her family.  
For Mary, undertaking a Foundation Degree provides a slower rate of change and 
progression in her transition and provides a pathway to university which allows her to 
ease a sense of alienation from her family.   
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Research and Developments in Probability Education Internationally 

Manfred Borovcnik and Ramesh Kapadia 

Institut für Statistik, Alpen-Adria-Universität Klagenfurt, Austria, Institute of Education, 
University of London, England 

In the topic study group on probability at ICME 11 a variety of ideas on 
probability education were presented. This paper provides a brief 
summary of the main threads of research in probability education across 
the world; it is intended that this will help consolidate developments. 
Further areas for work and research are also presented.  

Background 

Whether probability education needs to be seen as discrete and separate from statistics 
has been an ongoing debate for many decades. Nowadays, statistics seems to be 
dominant in school education and data handling has been a key theme as part of the 
movement of mathematics for all. Conversely probability is thought to be harder and 
less relevant. Nevertheless, probability is an important discipline in its own right, and 
does contain the key underpinning concepts to understand and use data sensibly.  

This paper focuses on the international research on probability issues in 
education, mainly derived from ICME 11 (2008) in Mexico. This study group, also 
linked to IASE included all the major themes being studied internationally in 
probability education. A thorough system of peer review, using an international panel 
of experts, ensured that the papers at ICME 11 were both well written and also 
covered the key areas of research being undertaken across the world.  The full papers 
from the conference are available on the ICME 7 site in the links below. Most of the 
papers have been developed further, including many interactive features (such as links 
to related and background research ideas) and can be found in Borovcnik & Kapadia 
(2009), which can also be accessed electronically.  These themes of international 
research provide a valuable bridge between international research and themes in 
Britain on the teaching of probability, which is often subsumed under data handling or 
statistics.  

Probability education has not been a central focus of the research community 
in the last three decades since the theoretical framework espoused by Kapadia & 
Borovcnik (1991) appeared. Jones (2005) on “Exploring probability in Schools” has 
largely followed the new paradigm in educational research, which is empirically 
oriented. Designs of teaching sequels are administered to students and analysed. 
Sometimes, beliefs and attitudes of teachers are empirically investigated. Only one of 
the contributions in Jones is philosophically oriented: Batanero, Henry, & Parzysz 
(2005) give a summary of the philosophical debate on the interpretations of 
probability and discuss its implications on teaching.  

Analysis of the subject matter is still dominated by Heitele’s fundamental 
ideas (1975), which seem to be more a description of the main chapters of a 
probability textbook than an analysis of the concepts from a more general perspective 
and their purpose. The educational debate is being revived by the more recent 
endeavours to explain the concepts of risk (see Gigerenzer 2002), which comes from 
societal needs taken up by cognitive psychologists and thereby attracts more attention 
in the community of educationalists. However, the fundamental ideas of probability, 
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in line with those discussed for statistics by Wild & Pfannkuch (1999) are still 
awaiting elaboration. Some starting points may be found in Pratt (2005) though the 
CERME working group, too, is mainly devoted to the empirical paradigm. 

The authors support the ideas and results of Fischbein (1987) who elaborates 
on intuitions and their impact on understanding (and accepting) probabilistic 
concepts. Raw primary intuitions of individuals are revised by teaching interventions 
and changed to secondary intuitions, which should and could help to handle with the 
formal sides of the concepts as a companion. Such ideas have the potential to describe 
any learning process; research begins with the learning process of an individual or a 
group on the research topic of interest and later becomes a learning process within the 
wider community when research papers are published, Fischbein’s ideas might also 
orientate the way a research community exchanges its results and enriches the 
discussion and makes progress.  

Despite the fact that a multitude of new technologies is available now in the 
era of information technology, and multi-media is spreading to all corners of life, 
publication in research has hardly changed. Textbooks for study are changing 
gradually, a few hypertexts make use of the possibilities of new media but for 
research publications it seems that times have not changed yet. Borovcnik (2007) has 
analysed the consequences of new technologies on applications and on educational 
endeavours; more endeavour is needed from the research community to improve its 
communication. Kapadia & Borovcnik (2009) have taken up the challenge of 
innovative publication (including multi-media and more) in the age of web 2.0. In 
what follows, we will focus on the content, the main streams of research in 
educational probability by classifying the international endeavours to obtain new 
insights on the teaching of probability. 

Central themes in international probability education research 

Probability and statistics have been part of school mathematics for less than 40 years 
and complement the traditional topics of arithmetic, algebra and geometry. Statistics 
is part of the curriculum in virtually all countries but ideas of probability may only be 
introduced for older pupils. Application-oriented statistics is undisputed in its 
relevance, but the place of probability is more ambivalent. Reduction of probability to 
the classical conception, mainly based on combinatorics, and its perception as a solely 
mathematical discipline with its connection to higher mathematics, are sometimes 
used as arguments to abandon it in favour of the statistics part. However, there are key 
reasons for a strong role for probability within mathematics curricula: 

 
1. Misconceptions on probability affect people’s decisions in important 

situations, such as medical tests, jury verdicts, investment, 
assessment, etc. 

2. Probability is essential to understand any inferential procedure of 
statistics. 

3. Probability offers a tool for modelling and “creating” reality, such as 
in physics.  

4. The concepts of risk (not only in financial markets) and reliability are 
closely related to and dependent upon probability. 

5.  Probability is an interesting subject in its own right and worthy of 
study. 

The challenge is to teach probability in order to enable students to understand 
and apply it, by creating approaches that are both accessible and motivating. Both, the 
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frequentist and subjectivist views of probability, and connections of probability to 
practical applications should be taken into account. Simulation is one such strategy, as 
is visualisation of abstract concepts. The use of technology helps to reduce the 
technical calculations and focus the learner on the concepts instead. The world of 
personal attitudes and intuitions is another source for success or failure of teaching 
probability. The main themes in the research, which nevertheless do overlap are: 
Conditional Probability and Bayes’ Theorem; The School Perspective: Pre- and 
Misconceptions; The Teachers’ Perspective: Pre- and in-service Courses; Impact of 
Technology; Fundamental Ideas. 

Conditional Probability and Bayes’ Theorem  

Conditional probability and Bayesian inference are important ingredients of university 
teaching, including courses for non-mathematical students. Many different types of 
errors have been investigated in isolation. According to C. Batanero and C. Diaz 
(Spain), there is neither a study investigating connections between various types of 
misconceptions, nor an analysis whether misconceptions are related to mathematical 
knowledge, i.e. whether they decrease with better achievement in mathematics. 
Consequently, they have developed a test with (mainly familiar) items, and 
administered it to university students. Results were analysed with factor analysis. 
Though some phenomena remained even with higher mathematics education, there 
was a significant decrease in misconceptions with a higher level of mathematics. For 
interrelations between several misconceptions, the results were less optimistic as these 
misconceptions seemed to be quite isolated. As a consequence, endeavour in 
probability education has to be fostered and misconceptions still have to be 
continually and repeatedly stressed in teaching in order to facilitate students’ 
understanding. 

P. Huerta (Spain) identifies a serious flaw of some existing research which 
does not take the structure of the posed problems into account.  He has classified the 
mathematical structure of “ternary problems” into 20 different types of problems with 
conditional probabilities of which only one subclass (and from it mainly one type of 
task) has been used in existing research. A graph with all problems has been 
developed to visualise the grade of difficulty of a special problem at hand. Applying 
this deep structural analysis, Huerta has developed a plan for future empirical research 
to cover all types of conditional probability problems to enhance the insights which 
might be gained.  

The School Perspective: Pre- and Misconceptions 

There has been a trend away from misconceptions, which may be changed by 
suitable teaching, towards pre-conceptions. Such a change of focus in research may be 
traced in current empirical research. 

D. Abrahamson (USA) designed an  experiment with a single child (Li, 11 
years), using  in an in-depth interview after a teaching phase in a classroom 
environment where an  urn experiment was replaced step by step by the computer 
environment. Abrahamson analysed the learning trajectory of the child and how the 
interaction of the representation of the notions by different media influenced learning 
(see below), starting with a 4-block scooper to pick out blue and green marbles, as 
illustrated below. As a valuable side effect of the approach, the histogram can be 
visually linked (with a “greenish” impression) to the proportion of green marbles in 
the urn. 
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Figure 1. Abrahamson’s “four block scooper” as a unifying element. 
 

The empirical studies by F. Chiesi & C. Primi (Italy) and L. Zapata 
(Colombia/USA) dealt with heuristics in the tradition of Kahneman & Tversky, 
especially the changes in “negative” and “positive recency” with age. They compared 
9, 11, and 25 years olds in order to imitate a longitudinal survey. Interestingly, their 
study showed an increase of the normative (correct) solution first (from age 9 to 11), 
which dropped again (age 25). They found that the bias towards “negative recency” 
decreased (from age 9 to 11) first and then increased again (age 25). However, the 
“positive recency” decreased (9 to 11) and was unchanged amongst adults (age 25). 
More in-depth investigations would clarify what is happening, and whether such a 
“development” can really be confirmed (of course it is not truly longitudinal). 

Conditional probabilities are considered to be difficult; Bayesian inference is 
no less difficult.  L. Martignon and S. Krauss (Germany) have worked with 10 year 
olds on these ideas and their precursors. They started with Wason cards to initiate 
learning steps in the children. 

Which cards do you necessarily have to turn around in order to check, whether the 
following rule holds for the set of 4 cards? “If one side of a card exhibits a vowel, 
its other side must exhibit an odd number” 

 
Figure 2. The original Wason cards. 

 
Children had difficulties but improved with contexts closer to everyday life. 

The researchers moved on to use tinker cubes (multi-cubes) to build towers, so that 
both sides could be seen simultaneously and then promoted learning steps in 
proportional thinking, reporting encouraging results from their pilot projects. 

K. Rolka and S. Prediger (Germany) studied 12 year olds playing a game of 
luck with tokens moved forward on a playing board by the result of various sorts of 
dice. The discussion amongst the children revealed how they interacted and argued 
fiercely in favour of preferred strategies, learning from their common struggle for an 
optimum strategy. The social situation of the class with the children interacting in 
their discussion featured strongly. 

 



Joubert, M. and Andrews, P. (Eds.) Proceedings of the British Congress for Mathematics Education April 2010 

45 

The Teachers’ Perspective: Pre- and in-service Courses  

There are pitfalls in the interpretation of results from statistical tests or from 
confidence intervals. These originate from the reduction of the interpretation of 
probability to situations, which may be repeated independently in the same manner. 
On this issue there has been a vigorous debate not only in the foundations of statistics 
but also in the didactical community. Ö. Vancsó (Hungary) has developed a parallel 
course in classical and Bayesian statistics. He believes that it is a false dichotomy, to 
teach either classical statistics or Bayesian statistics, as both offer a consistent theory 
of probability. He has tried and refined his ideas in several cycles in teacher pre-
service education and reported his positive experiences: “Now I have really 
understood what is meant by confidence intervals” one of his students exclaims.  

An interesting extra-curricular activity was explored by H. Trevethan 
(Mexico) who described a project in the context of a science fair. A pair of students 
worked on a project to present a game of chance. There were several advantages. 
These included the autonomous activity of the students, their own responsibility, 
presenting in public etc. The game was “Shut the box”, which is certainly open to 
varied stochastic strategies as different dice can be chosen to play the game. This 
authentic (and not artificial) transfer of responsibility could well be taken up more 
often in teaching in class. Mathematically, conditional probabilities and Bayes’ 
theorem are the key concepts to develop winning strategies. 

K. Lyso (Denmark) used a battery of standard tasks covering the main 
primitive concepts including two-stage experiments. The distinctive feature was on 
the discussion about which solutions are feasible, or which reconstruction of the task 
made sense and therefore led to a sensible solution even if it did not coincide with the 
“normative” solution. One result was the documentation of an inclination to 
reformulate tasks. The students sometimes reformulated two-stage experiments into 
one-stage tasks getting a wrong answer but found it hard to see why their 
reconstruction was misleading: 

L. Zapata (Columbia/USA) investigated well-known tasks from Kahneman & 
Tversky in order to clarify what may be learned from new as well as more 
experienced teachers. She has tried to derive meta-knowledge from her in-depth 
interviews with teachers. Surprisingly, or possibly unsurprisingly, novice teachers 
repeated the same misleading intuitive conceptions as their students and thus were not 
really able to help them. It may be that probability is much more prone to such 
difficulties than other topics in mathematics. This is confirmed by V. Kataoka (Brazil) 
who ran a series of workshops of in-service education. One special experiment used in 
the workshop illustrates the importance of suitable models and data sampled by 
randomness (when do you really have data from random samples?)  

We break a stick randomly into three pieces. Afterwards, the subjects are asked to 
form a triangle of the three pieces. Finally the success rate is determined with 
which triangles actually could be formed. Try it with spaghetti – without 
explaining in advance what you plan.  

Success rates of 75% are not rare. In contrast to it, there are (at least) two 
models for randomly breaking the stick (with 25% and 19% success rates). The 
obvious discrepancy between the theory and the model lets us gradually start to doubt 
whether we can break the stick truly randomly into 3 parts. As a conclusion, relative 
frequencies might sometimes be of no value to estimate an unknown probability. This 
enriches the usual discussion about the convergence of relative frequencies by 
focussing on the underlying assumption of randomness of the data. Analogous 
examples are abundant but are less emotionally laden than spaghetti. 
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S. Anastasiadou (Greece) has developed a battery of simple items to research 
relations between algebraic and graphical skills in student teachers. She used 
similarity diagrams and came to the conclusion that there is a widespread lack of skill 
to change between different representations of a task or a notion. This lack of 
conceptual flexibility seemed to hinder a deeper comprehension of the notions. With 
different representations, students seem to learn different concepts – they do not 
necessarily notice that the representations deal with the same notion only in a 
different form. 

Impact of Technology 

Technology can be viewed in at least two very distinct ways. In one aspect is the 
media used such as Powerpoint or interactive use of computers by students. The other 
aspect relates to the software tools used. Some software is generic (eg Excel) and 
some software is designed specifically for probability such as Fathom. In practice 
there is more software relating to statistics, though probability software is growing. 
Fathom and Tinkerplot can be used for efficient calculations and for illustrating key 
ideas such as the concept of distribution and the law of large numbers, as noted by S. 
Inzunsa (Mexico) and R. Peard (Australia). 

New media indirectly form the backbone of the research of D. Pratt, writing 
with R. Kapadia (England) on shaping the experience of naïve probabilists.  
Sequences of the programme ChanceMaker supplied new and challenging 
experiences to learners in order to shape their intuitions and strategies. There are new 
challenges for designers of software and teachers using this software. In a fusion of 
control over the initial parameters (via randomness) and representations of results 
(histograms for the distribution of data or statistics like the mean), new insights into 
randomness have been generated. A new world of up-to-date unknown intuitions 
might emerge, which would affect concepts and their understanding. 

J. Watson and S. Ireland (Australia) reported the results of in-depth interviews 
covering issues on the relations between empirical and theoretical aspects of 
probability. The class of 12 year olds undertook coin tossing and tabulation of results, 
followed similar experiments with Tinkerplot, which is becoming a popular piece of 
software. This widened the children’s experience. Some questions remained open for 
further scrutiny. Can the computer really generate randomness? How can one read 
diagrams from the software correctly? How can we ensure that the children have 
sufficient experience in proportional thinking? 

Fundamental Ideas 

The fundamental ideas of probability include random variables, distribution, 
expectation, and relative frequencies, as well as the central limit theorem. R. Peard 
(Australia) has gone to the roots of the subject with questions from games of chance. 
Games of chance have been partially discredited by their closeness to combinatorics 
(which is not always easy to understand) and by their artificiality (we want to teach 
real applications to our students). However, games of chance have spread widely, 
such as lotteries, and developed to become an important business sector, which is still 
growing. 

M. Borovcnik (Austria) has studied some peculiarities of stochastic thinking, 
which make it so different from other approaches: 

• There is no direct control of success with probabilities – the rarest 
event may occur and “destroy” the best strategy.  
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• Interference with causal re-interpretations may lead a person 
completely astray. 

• Our criteria in uncertain situations may stem from “elsewhere” and 
may be laden with emotions – probability and divination have a 
common source in ancient Greece. 

With these features of stochastic thinking in mind, paradoxes like the 
stabilising of relative frequencies, even though new events have full-fledged 
variability, may not seem special. One difficulty lies in a primitive attribution of an 
ontological character of probability to situations. Probability does not exist – it is only 
one of many views to reflect on phenomena of the real world. 

Perspectives for the future  

We end with some assertions requiring further research endeavour in probability 
education: 

• People use their experience in order to judge probabilities incompletely 
and – even worse – in a haphazard manner. 

• People have difficulties in judging very small and very high 
probabilities especially if these are connected to adverse consequences. 

• People are inclined to attribute equal chances to the – given or seen – 
possibilities, especially if there are just two.  

• People attribute probabilities and process these into new ones 
neglecting even the most basic rules (e. g. all probabilities sum to 1). 

We believe that sharing and testing ideas across different countries will help 
promote deeper understanding. In particular, further empirical testing using shared 
instruments will yield deeper insights.  
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The struggle to achieve multiplicative reasoning 11-14 

Margaret Brown, Dietmar Küchemann and Jeremy Hodgen 

King’s College London 

Multiplicative reasoning is a key competence for many areas of 
employment and everyday life, and for further mathematical study. It is 
however a complex conceptual field. The ICCAMS project, with 
multiplicative reasoning as one of its two focus themes, has in Phase 1 
conducted a broadly representative survey of attainment which suggests 
that standards in this area have not risen since the 1970s and that 
relatively few students are achieving competence in the relevant areas of 
the national strategy Key Stage 3 framework. Student difficulties are 
illustrated by evidence from group interviews in Phase 2 of the project. 

Keywords: Multiplicative reasoning, ratio, assessment, key stage 3 

Background: multiplicative reasoning 

The ESRC project ‘Improving Competence and Confidence in Algebra and 
Multiplicative Structures’ (ICCAMS) selected these two areas of the curriculum 
because of their pivotal role in the Key Stage 3 (age 11-14) mathematics curriculum, 
and especially for the further study of mathematics and for its functional application.  

While algebra centrally underpins the whole of the further study of 
mathematics, it is the basis for only the more sophisticated applications.  In contrast 
multiplicative reasoning is the foundation of most mathematical applications and is 
relevant to all pupils. This paper will examine aspects of performance in 
multiplicative reasoning that students find difficult and which form a major barrier to 
developing competence and confidence in functional applications. 

The delineation of the conceptual field of multiplicative reasoning is complex 
(Harel and Confrey 1994, Confrey et al. 2009). While there are other aspects of 
multiplicative reasoning e.g. those concerned with combinatorics or calculation of 
areas and volumes, applications of the ratio/rate model are by far the most common 
and only these will be discussed in this paper. 

Broadly speaking, the main contexts of ratio/rate application are those where 
two or more values are being compared, and/or where one value is being scaled up or 
down to give another. Sometimes these comparisons or operations are appropriately 
expressed additively and involve the ideas of difference (‘a is d more/less than b’); 
more often they are multiplicative (‘a is r times bigger/smaller than b’).  

The values being compared may be of essentially the same quantity and the 
comparison may be related to two or more different ‘things’, or to one ‘thing’ at two 
or more different times (numbers of boys and girls; changing numbers of boys). 
Especially where the quantity is a discrete variable, or where the multiplying factor is 
a whole number or familiar fraction, this relationship is often expressed as a ratio a:b. 
Where the comparison is between two variables which refer to different quantities 
measured in different units, the relation is usually expressed as a rate a/b which takes 
the form of a single number to which is attached a composite unit like miles per hour 
or £ per capita derived from the units in which the two variables are measured. These 
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comparisons are equivalent in reverse to scaling up a value to get another value, 
respectively by using a ratio or scale factor, or by using a rate.   

Whereas a specific value of a rate is a single number with a composite unit, a 
specific ratio a:b can be regarded as a set of pairs of numbers which is associated with 
two ‘dimensionless’ rates a/b and b/a. Such a dimensionless rate is often described as 
a proportion, especially when it is expressed as a fraction or percentage and refers to a 
comparison between one contributing part and a whole collection (‘what proportion of 
the class are boys?’), or to similar geometrical figures (‘have the same proportions’) . 
‘Direct proportion’ is also used more generally to describe a multiplicative relation 
between two variables.  

Rates often but not always involve the variable of time and are very 
commonly used in finance and economics (e.g. GNP per capita, rates of interest, and 
exchange), in the physical sciences (e.g. speed, density, power, pressure) and in health 
(e.g. rates of growth, medicine doses). Other applications use dimensionless rates 
(proportions), for example probability and risk, and enlargement through scaling in 
spatially focused professions such as architecture, design, and engineering.  

Thus all the ratio/rate applications have in common the two processes which 
constitute multiplicative thinking: the derivation of a rate (or ratio or proportion) from 
two corresponding values (a/b) of two or one variables, and the use of a rate (or ratio 
or proportion) to calculate an unknown value of one variable given a corresponding 
value. These require respectively the operations of division and multiplication, with 
division if anything taking the predominant role.  

In our primary curriculum the aspect of multiplication which is still most 
emphasised is that of repeated addition (‘add three five times’) rather than that leading 
to multiplicative reasoning and ratio (‘five for every one of three’, ‘five times larger 
than 3’). This is even when the ratio meanings have been demonstrated to be easier 
(Nunes and Bryant 2009).  

Multiplicative reasoning starts in the primary school with whole number 
quantities and whole number scale factors. Later in primary schools and especially in 
Key Stage 3, it becomes tied in strongly with rational number reasoning. Dickson et al 
(1984, 287) note there are two meanings of rational numbers, those related to 
measurement (1.7 metres) and those to operators – essentially rates or scale 
(multiplying) factors (1.7 times as large); Confrey et al. (2009) separate off from the 
latter a further meaning, that of ratio, but there seems little justification for doing so 
since ratios are so closely related to the operators of rates and scale factors.  

Again, the non-ratio ‘measurement’ meanings of rational numbers as a 
measure of a fractional part of a spatial whole, or as a decimal number on a number 
line, are the ones that tend to be emphasised in the primary curriculum, although there 
is some mention of meanings concerned with ratio (‘3 for every 5’,  ‘3/5 of’). 

Perhaps not surprisingly, given the complexity of the conceptual field on 
which it depends, and current emphases in primary schools, in the early years of 
secondary school students experience problems with multiplicative reasoning. This 
paper explores some of these using early results from the ICCAMS project. 

Methods: the ICCAMS project 

Increasing Competence and Confidence in Algebra and Multiplicative Structures 
(ICCAMS) is a 4-year research project funded by the Economic and Social Research 
Council as part of a wider initiative aimed at identifying ways to participation in 
Science, Technology, Engineering and Mathematics (STEM) disciplines.  
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Phase 1 of the project consists of a large-scale survey of 11-14 years olds’ 
understandings of algebra and multiplicative reasoning in England. This is followed in 
Phase 2 by a collaborative research study with teacher-researchers who are using the 
results of Phase 1 on their own classes as part of extending the investigation to 
classroom/group settings. The aim is to examine how formative assessment can be 
used to improve attainment and attitudes, and finally how the work can be 
disseminated on a larger scale. Currently we have had the first year of the survey and 
the exploratory year of the collaborative study. 

In Phase 1, comparison with the Concepts in Secondary Mathematics and 
Science (CSMS) study (Hart et al. 1981) will also enable us to examine how students’ 
understandings have changed since 1976. The survey consists of three of the CSMS 
tests, Algebra, Ratio and Decimals, and an attitudes questionnaire. Some selected 
items from the original CSMS Fractions test were appended to the Ratio test. Results 
discussed here relate mainly to the Ratio test and part of the Decimals test. 

In late June or early July 2008, tests were administered to a sample of 
approximately 3000 students from approximately 90 classes in 11 schools as shown in 
Table 1. Each student took two of the three tests so as to provide comparative 
information between tests but not to overload students. The numbers of students in 
each year-group taking each test is therefore roughly two-thirds of the total number of 
students involved in that age group in 2008. 

 
 
 
 
 

Table 1: Numbers taking the two tests in the 2008 sample  
 
The sample of 20 schools involved in the survey across 2008 and 2009 is a 

stratified random sample drawn from MidYIS, the Middle Years Information System. 
MidYIS is a value added reporting system provided by Durham University, which is 
widely used across England (Tymms and Coe, 2003). Because some schools were not 
able to complete the testing in 2008, the 2008 sample for which results will be 
reported on an interim basis is not fully representative and is slightly skewed towards 
higher attaining students. The original CSMS test on Ratio was administered to a 
sample only from Years 8-10, although Decimals were used with Years 7-10 and 
Fractions with Years 7-9. In the current study, because the focus was on Key Stage 3, 
all the tests were administered to students in Years 7-9. 

Ratio items, some Decimals items, and almost all of the small set of Fractions 
items used in this study, were designed to assess whether students could apply 
multiplicative reasoning in increasingly complex situations. 

In the original CSMS data analysis in the 1970s, items were selected from 
each test to form a series of hierarchical levels of difficulty. These items included 20 
out of the 27 items in the Ratio test and 39 out of 72 items in the Decimals test. The 
criteria for selected items and levels were consistent performance across different age-
groups in the sample, high levels of correlation within the items for each level and 
strong hierarchical relationships between items in different levels (Hart et al. 1981). 
The remaining items that were retained were for diagnostic purposes. There were 
different numbers of levels associated with each test, since the levels were derived 
empirically; Ratio had 4 levels and Decimals had 6. The additional 15 items on 
fractions which were added to the Ratio test to better assess multiplicative reasoning, 
were drawn from items which appeared in the hierarchy of the CSMS Fractions test. 

Test Year 7 Year 8 Year 9 Total 
Ratio(+fractions) 680 754 588 2022 
Decimals 717 767 598 2082 
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However in the case of Fractions only single item comparisons with the 1976 data 
will be possible since the full set of Fractions items was not used. 

Students were judged to have been successful at a specific level if they had 
successfully answered two-thirds or more of the items at that level. Students who had 
not achieved two-thirds of Level 1 items were said to be ‘at Level 0’. It was possible 
to broadly describe the type of mathematical understanding required for the items in 
each level in each topic, although these were not always neat descriptions since the 
items and levels were assigned on empirical not theoretical grounds.  

As part of the ICCAMS study, the CSMS tests were checked against the 
current version of the National Curriculum and appeared to form just as appropriate 
assessments as they had done in the 1970s. Piloting indicated that only minor 
updating of language or context for a very small number of items was required which 
would be unlikely to significantly affect their difficulty.  

Phase 2 represents the intervention part of the project in which the aim is to 
design, trial and disseminate an intervention based on formative assessment practices 
in Year 8 in the areas of algebra and multiplicative reasoning. Two Year 8 teachers 
from each of four schools are part of the research team, with the schools having a 
range of intakes and attainment. The classes involved in 2008/9 covered almost the 
full range of Year 8 attainment. The work in the first year has been partly exploratory, 
with all members of the research team undertaking several school-based activities and 
reporting back in team discussions. These activities have included observing student 
responses in lessons relating to algebra and multiplicative reasoning, interviewing 
small groups of Year 8 students about aspects of their mathematical understanding, 
and trying out starters and other class activities as diagnostic tools.  

Results and discussion 

Because the full analysis of CSMS test results on the complete representative sample 
including those tested in Summer 2009 is not yet available, this account of Phase 1 
results must be interpreted with some caution as it may differ somewhat from the final 
outcomes, especially because the mean MidYis score of the 2008 sample was a little 
higher than the national average.  

The proportional bar-charts for the ratio results for Years 8 and 9 are shown in 
Figures 2 and 3 respectively. These suggest that in both year groups, as in other tests, 
there is a higher proportion below Level 1 in 2008 than in 1976. The reasons for this 
general finding are not yet clear. At the top levels the picture is more encouraging, 
although the improvements over 1976 are small enough to possibly disappear when 
the sample is larger and better balanced. 

The verbal description of the levels is: 
Level 1: Simple integer rates like ×2 or ×3 but including halving  

Level 2: Rates like ×1.5 set in contexts that allow a ‘building up’ approach such as 
taking an amount then half as much again 

Level 3: Problems involving fractional quantities or rates such as ×12/3 set in 
contexts that allow an indirect ‘building up’ approach or which prompt the unitary 
method  

Level 4: Non integer enlargement (e.g. 5:3) or problems set in a context involving 
scaling continuous quantities where a ‘building up’ approach (or the unitary 
method) is not meaningful  
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Figure 2: Proportions of Year 8 students assessed at the different CSMS levels for Ratio in 
1976 and 2008              [N= 754 (2008), 800 (1976)] 

 

Figure 3: Proportions of Year 9 students assessed at the different CSMS levels for Ratio in 1976 and 
2008               [N= 588 (2008), 767 (1976)] 
 

So the results in Figures 2 and 3 suggest that two-thirds of Year 8 students and 
well over half Year 9 students cannot consistently manage anything in terms of rate 
and ratio other than reasoning involving whole number multiplication, or division by 
2, with about 20% at Year 8 and about 10% at Year 9 not even managing this reliably.  

Currently it looks as though over 15% at Year 8 and over 25% at Year 9 can 
manage non-unitary ratio where some intermediate step is reasonably easy to spot. 
While only about 5% of Year 8 and 10% of Year 9 are fully operational with ratio, 
this proportion is equivalent at Year 8 and slightly better at Year 9 than results for 
1976.  

Comparing these levels with the national strategies framework for Key Stages 
3 and 4, there is not a direct match but it appears that in Years 7 and 8 students are 
expected to be taught the content at Level 3, and Level 4 is intended to be covered by 
the end of Year 9. (Some aspects of enlargement only appear in Year 10 but the 
examples given for Year 9 seem to suggest that calculation and use of scale factors 
like 0.7 is to be covered there.) The results therefore suggest that under 20% of 
students are succeeding on this material.  

The proportions at different levels for the Decimals test were generally better 
than in 1977, except at the highest and lowest levels in Year 9. Most of the levels 
were defined in relation to understanding of the decimal place value system which 
arise in the measurement aspect of decimals, but part of the highest level is closely 
related to the idea of multiplicative reasoning: 

Level 6: Decimals which result from division (and the existence of an infinite 
number of decimals)  
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The proportion who reached Level 6 was about 10% at Year 8 and 15% at 
Year 9. The Year 8 result was better than in 1977 and the Year 9 result was worse, but 
again the margins were small and are thus unreliable. This result ties in well with the 
results for ratio as the understanding that you can obtain a decimal answer from a 
whole number division (and the ability to find it with an easy divisor, such as 20) is 
needed for the highest level, Level 4, of the Ratio test. Again this Level 6 content is 
covered in the national strategy framework by the end of Year 8, but by the end of 
Year 9 still only 15% seem to have grasped it.  

Looking at the proportions of items in each test on which there is significant 
improvement, significant reduction, or no significant change (Figure 4), it becomes 
clear that while there are significant improvements on over 50% of Decimal items, 
there are hardly any items with improvements on the Ratio test and none from the 
Fractions test.  
 

 
Figure 4: Numbers of items on which success rates have significantly increased or decreased between 
1976/7 and 2008 in each mathematical topic using Year 9 data  

 
Again many of the Decimals items with significantly improved scores were 

related to Decimals used for measurement rather than as operators. This leaves us 
therefore with the result that multiplicative reasoning seems to be generally weak and 
if anything to have deteriorated since the 1970s.  

This is illustrated in Figure 5 by detailed results for one of the Level 4 items in 
the Ratio test. Although the ratio is an easy one of 2:3, the fact that the problem 
cannot be readily solved by the unitary method or by an additive strategy makes it 
difficult. Although enlargement first appears in the Year 8 strategy framework, and 
with non-whole number factors in Year 9, their answers indicate that many students at 
the end of Years 8 and 9 do not seem to appreciate that enlargement requires 
multiplicative rather than additive reasoning. 

The results for both parts of the question are similar, as are the results for 1976 
and 2008; the fact that the small initial lag in the 2008 results at the start of Year 9 
closes by the end may be due to the inclusion of non-whole number enlargement in 
the Year 9 framework. However, even at the end of Year 9, only 20% of students can 
solve the problems. 

To illustrate student thinking a summary is given of discussions on this ‘Kurly 
Ks’ item with two groups of Year 8 students, both from London comprehensive 
schools with GCSE results well above the national average.  
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Figure 5: Success rates for Years 7 to 10 on an enlargement item in 1976 (dotted lines) and 2008 
(unbroken lines) 
 

Dietmar and Margaret with Nasreen, Ahmed, Maniyan and Susan (middle 
set) 28/11/08.   Ahmed quickly launches in with ‘13 units… 4 more there... cos 
that’s 9, that will be 4 more, the same...’. Others agree… They all went for an 
addition strategy, either 9+4 or 12+1, to get 13. Dietmar then suggests: ‘Say 
instead of this being 12 we made it 16... and this bit’s still 9...’. Nasreen sticks to 
the addition strategy: ‘You add 8 now’. Ahmed agrees. Margaret suggests that 
instead of adding 8 you could double both numbers. Three of them say that this 
isn’t right, you have to add 8. (Not sure about Maniyan, whose English is weak.) 
Margaret asks what the answer would be if you did double the 9. Ahmed: ‘18, and 
it’s supposed to be 17’. (Susan agrees, and Nasreen I think.) They seem to regard 
doubling as a special case. Ahmed: ‘You don’t just do times 2 because it works on 
one answer’. Later Susan adds ‘You’re going to have to double if it’s twice as big, 
but if it is just under twice as big you can’t double everything.’ When Dietmar 
then sketched similar rectangles (8 by 9 and 16 by an unknown number) they 
tended to prefer ‘doubling’ to find the unknown side i.e. preferred the answer 18 
to 17.  

Dietmar and Jeremy with Bethan, Zack and Danny (top set) 10/11/08. Starts 
with a long silence...little whispers...Bethan: ‘8 is kinda equal to 12, in the same 
way that 9 is equal to RS’... pause…Dietmar asks what the next step would be. 
Bethan says she is still thinking... Zack: ‘Don’t really get... I was thinking... if the 
8 here (points) and that’s 9, you plus it to find out that? But...’ [I now think he is 
working just on the little K and wants to add the 8 and 9 to find DE, but then 
thinks it might not work as the lines are curved – but at the time we didn’t 
appreciate this] He returns to RS on large K and now suggests 13. Bethan says 
she’s still not sure.... Jeremy to Zack: ‘Why 13?’ Zack: ‘Difference is 4... larger 
by 4... so this (RS) should be larger (than the 9) by 4.. if it’s an accurate 
enlargement’. Bethan: ‘I think it’s 13 and a half... cos 8 up to 12 is two-thirds... so 
9 is two-thirds… so I halved 9 which is 4.5 then add it onto 9 so you get… 
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Jeremy: ‘You think 13, you think 13.5...’ He asks Bethan to explain again. She 
now uses multiplication rather than adding in the final step: ‘You halve it, then 
times it by 3 to get 3 thirds’. Zack later sticks to his additive strategy: ‘Like 8 and 
12... the difference 4, hey... if you enlarge the smaller shape to get the bigger 
shape, wouldn’t everything have to have the same... difference?’ Bethan: ‘I’m not 
sure if you have to add something or times it by something...’. 

These interview quotations confirm that students from the middle of the 
attainment range, and also some from nearer the top, tend to use an addition strategy 
for enlargement. They reluctantly allow some exceptions, for example doubling, but 
do not see that they could use a multiplicative factor other than a whole number. 
(Susan’s final comment is revealing). It is only a few higher attaining students, like 
Bethan, who are able to even if tentatively see their way through to multiplication 
strategies, even when easy scale factors as here allow ‘building up’ strategies. 

Conclusions 

Multiplicative reasoning is clearly an area which is key to both a large number of 
mathematical applications and to further study in mathematics. Yet the evidence 
presented here suggests that students have a very weak grasp of important aspects of 
the conceptual field and that understanding in this area has not improved since the 
1970s. This is not because these things are not taught as most of the students in the 
sample will have experienced teaching of the relevant ideas. We have to conclude that 
the teaching has not been very successful, and it is possible to speculate on many 
reasons why this should be so. For example it may not have been appropriately related 
to students’ prior understandings, or may not have been sustained enough and broad 
enough to have had a permanent effect. In Phase 2 of the project we will be 
developing an intervention based on formative assessment and more sustained periods 
of teaching to see if this improves the learning of these important ideas. 
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Connecting mathematics in a connected classroom: Teachers emergent practices 
within a collaborative learning environment 

Alison Clark-Wilson 

The Mathematics Centre, University of Chichester 

During 2008-9 seven secondary mathematics teachers from England, 
Scotland, Netherlands and Sweden began to use a wireless classroom 
network to link their students’ handheld ICT devices. This paper focuses 
on the teachers’ reported uses of the Screen Capture feature, which were 
coded to reveal patterns in the emerging classroom practices. Analysis of 
the data revealed: increased opportunities for purposeful classroom 
discourse; improved formative assessment practices; and highlighted the 
need for teachers to choose rich examples on which to build the 
mathematical tasks.  

Mathematics, ICT, Teacher development,  

The Research Context 

Following on from the English TI-NspireTM handheld pilot evaluation in 2007-8 
(reported in Clark-Wilson 2008) Texas Instruments funded a second project which 
introduced the TI-NspireTM NavigatorTM wireless classroom network system to the 
existing handheld classroom environment. Two of the teachers involved in the 
English project joined teachers from Sweden, Netherlands and Scotland in beginning 
to develop viable classroom approaches and evaluate their associated outcomes. Of 
particular interest were the ways in which the teachers perceived that the introduction 
of the network changed their classroom environment and the nature of the tasks that 
they could set. The focus of the pilot was limited to the following TI-NspireTM 
NavigatorTM functionalities: File management, Screen Capture; Quick Poll; Live 
Presenter; Class Analysis. This paper will report specifically on how the teachers used 
the Screen Capture feature. Whilst the cultural aspects of mathematics teaching within 
the different country settings is of great interest, this is not addressed within this paper 
due to the limitations of space. 

Theoretical framework 

At the heart of this study was an exploration of teachers’ classroom practices, and in 
particular those which enhanced and promoted opportunities for student (and teacher) 
learning, resonating strongly with research into formative assessment practices.  The 
interpretation of formative assessment adopted by the researcher throughout this study 
(and shared with the teachers) is best articulated by Black and William who write: 

[Assessment] practice in a classroom is formative to the extent that evidence 
about student achievement is elicited, interpreted, and used by teachers, learners, 
or their peers, to make decisions about the next steps in instruction that are likely 
to be better, or better founded, than the decisions they would have taken in the 
absence of the evidence that was elicited. (Black and Wiliam 2009, p. 9) 

Consequently, the research focused on providing opportunities for teachers to 
describe and evaluate their practices, and in particular on the way in which the 
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information gained through the use of the technology impacted upon their decisions 
and actions in the classroom. A number of previous research studies into the use of 
TI-NavigatorTM with TI-84 graphing calculators in the United States, Canada and 
France had concluded that the opportunities for formative assessment had been 
enhanced (Dougherty 2005; Hivon, Pean, and Trouche 2008; Sinclair 2008). For 
example, a pilot study on one classroom in Hawaii concluded, 

The use of TI-Navigator technology supports the development of a collaborative 
classroom environment by enhancing student interactions, focusing students’ 
attention on multiple responses, and providing opportunities for students to peer- 
and self- assess student work. The ability to display a full class set of data or task 
responses supports a problem-solving approach to developing skills and concepts.  
(Dougherty 2005, p.28) 

In addition, the notion of a ‘collaborative classroom’ was a reported outcome 
of a French study (Hivon, Pean, and Trouche 2008) which also suggested that the TI-
NavigatorTM had changed the nature of the mathematics classroom environment by: 

offering an opportunity to change the nature of classroom mathematics tasks; 
offering new opportunities for both cooperative and collaborative group learning; 
and increasing the complexity of the teacher’s role with respect to ‘orchestrating’ 
the lesson. (Hivon, Pean, and Trouche 2008) 

The notion of ‘orchestration’ expands upon the complex nature of the teacher’s role in 
‘conducting’ a lesson using networked handheld technology, with a number of 
researchers offering emergent theories on this theme (Trouche 2004; Drijvers and 
Trouche 2008; Roschelle and Pea 2002).  

Finally the nature of the task design with technology was an important 
consideration with the study, and in particular the choice of mathematics examples 
(which constituted the task) and the resulting classroom discourse (Ainley, Pratt, and 
Hansen 2006; Goldenberg and Mason 2008). The classroom network offered a new 
opportunity for the design of tasks, although this paper is not reporting specifically on 
this outcome (see Clark-Wilson 2009 for a fuller account).  

The Research Approach 

The research sought to collate evidence from the teachers about the aspects of the 
classroom use of TI-NspireTM NavigatorTM that promoted desirable classroom 
pedagogies and the nature of the rich mathematical starting points that might lead to 
enhanced student engagement and achievement in mathematics. A set of subsidiary 
questions were developed for each of the system’s functionalities and, for the Screen 
Capture feature, these were: 

• What was the nature of the ‘rich’ mathematical starting points for 
which Screen Capture stimulated pupils (and teachers) to learn 
mathematics? 
• How could Screen Capture be used to maximise the opportunities 
for students’ peer communication with (and independent from) the 
teacher; 
• What classroom strategies did the teachers devise to use data 
from Screen Capture to support them in all aspects of formative 
assessment? 
 
The teachers met for an initial one day meeting at which they shared some of 

their early classroom approaches and the project community begun to be established. 
At this meeting they were introduced to some of the technical aspects of the system 
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and the research protocols through which they would report their classroom 
experiences. The group also spent time, with expert support, developing some starting 
points for mathematical activities which used the collaborative sharing of students’ 
handheld screens as a fundamental aspect of the task design. I stimulated this 
discussion by offering a number of simple activity ideas which exemplified this 
approach. For example, by asking students to all enter a function which they thought 
would pass through a particular coordinate point on a common set of axes. 

Each teacher was asked to complete a detailed lesson evaluation (Less-eval) 
for at least 3 selected lesson taught during the Spring and Summer terms 2009 and 
submit them with any relevant accompanying evidence which typically included 
students’ work, Screen Capture images, students TI-NspireTM handheld files, lesson 
plans and the teacher’s own reflective comments. The nature of this lesson evaluation 
process was reported in an earlier BSRLM paper (Clark-Wilson 2008).  In brief it 
provided a structure for teachers to record information about the class, the 
mathematics to be taught and to tell the story of the lesson and its activity, whilst 
encouraging teachers to reflect upon the multiple and various outcomes. This data was 
analysed using a constant comparison approach, influenced by grounded theory 
(Glaser and Strauss 1967) through which a number of emergent practices became 
evident. This data analysis was supported by the use of Nvivo7 software (QSR 
International 2008) which facilitated the data analysis process and the systematic 
coding and grouping across the range of data types.       

In addition, each teacher was observed at least once using TI-NspireTM 
NavigatorTM with a class and the teachers also participated in a semi-structured 
interview (Int) directly after each lesson which probed specific choices and actions 
they had taken during the lesson. 

So what is the Screen Capture feature within TI-NspireTM NavigatorTM? 

Normally, when working with a class who are using a handheld device such as 
a scientific calculator, graphical calculator or TI-NspireTM handheld, the individual 
screens are private to the user and teachers would observe the students’ mathematical 
activity by moving around the classroom or, with some devices, inviting students to 
connect their device to a whole class display. 

 
Figure 1 The TI-NspireTM NavigatorTM classroom network 

 
The TI-NspireTM NavigatorTM classroom network requires students to log into 

the ‘class’ which enables the teacher to use a range of features, one of which is to 
choose to display all of the students’ handled screen simultaneously. Using one of the 
reported lesson examples, Figure 2 shows an example of this view. 
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Figure 2 A Screen capture view of the students responses to a mathematical task 

 
When using Screen capture, each teacher chose whether to display this 

privately on their own computer or display it to the class using a data projector. This 
paper will focus on examples where the teachers chose to make it a central feature of 
their task design and associated mathematics pedagogy. 

Research Results 

The Screen capture was used in 23 of the 25 lessons that the teachers reported to the 
study and teachers were unanimously positive about their experiences. The data 
analysis led to the following categories of use: monitoring students activity during the 
lesson; supporting teachers to know when to intervene; promoting and initiating 
whole class discourse; promoting and supporting peer- and self- assessment; 
privileging mathematical generalisation; increasing sample sizes (within statistical 
work); and enabling mathematical sorting.  

What follows is a description of each of these usage categories with supported 
by the teachers’ evaluations based on their classroom experiences.  

Monitoring student activity during lessons 

All of the teachers reported that the use of Screen Capture had enabled them to 
monitor students’ activities whilst they were working with TI-NspireTM during 
lessons. The rationale for this monitoring varied, with some teachers using this 
functionality in a passive way to check ‘that every student is working – doing what 
they were supposed to do’ [Int] and ‘to ensure that everyone got to the first page 
okay’ [Int]. There were a small number of lessons where the teachers used Screen 
Capture privately on their own computer (e.g. whilst the students were completing a 
test). However, in the vast majority of lessons the Screen Capture display was on 
public view in the classroom. This prompted a much more active use about which the 
teachers were highly enthusiastic, namely the insight that Screen Capture gave into 
how their students were engaging with the tasks they had been set.  
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Some teachers said that they were monitoring the students’ work for pace, 
both to observe the students’ natural work rates and to impose an expected work rate. 
One teacher said it was to ‘spur on the learning’ [Less-eval] and another ‘to 
selectively sample the class work and drive the activity forwards by challenging them 
with new situations they had constructed’ [Less-eval]. One of the notable comments 
made by several teachers related to an appreciation that the pace at which their 
students worked was much more widely distributed than they had previously 
appreciated.  

Several teachers commented specifically on the value of Screen Capture as a 
window into their students’ progress through the lesson. In one lesson evaluation, the 
teacher commented,    

Screen Capture gave me instant feedback throughout regarding student progress.  
As a teacher you develop a sense of how a lesson is progressing based on the level 
of noise, the snippets of conversation that you hear, etc.  However, in this lesson I 
was able to ‘see’ what students were doing.  This adds to the other sensitivities 
that I have so that I am able to make better judgments. [Less-eval] 

Other teachers reported that they were monitoring specifically for the purpose 
of identifying exemplar solutions and common (or particular) mistakes, which in 
some cases led to an individual or whole class intervention by the teacher.  

Supporting teacher interventions 

In all cases, the reported use of Screen Capture led to some action or intervention on 
the part of the teacher. These ranged between interventions involving individual 
students (or groups of students) to the initiation of focusing activities involving the 
whole class.  

By far the majority of teacher interventions related to those of a pedagogical 
and mathematical nature concerning the task itself. In many cases the teachers used 
the initial Screen Capture view to identify particular students (or their screens) as the 
focus for the whole class discourse. In some cases this led to the identification of one 
student to become Live Presenter1, and in other cases to highlight particularly 
interesting solutions or responses. 

Some teacher interventions following the use of Screen Capture arose from 
their observation of issues the students were experiencing with their use of the TI-
NspireTM files. For example ‘I adjusted my advice for how to keep the triangles on the 
screen by reducing all of the lengths to smaller numbers’ [Less-eval] and ‘I had to use 
Screen Capture to see why they did not find any connection... I could see they had 
dots everywhere so I had to resend the file.’ [Less-eval]. This also supported the 
teachers to appreciate issues within the design of the TI-NspireTM file by ‘learning 
from how the tns file was interacted with and what things could too easily be ‘broken’ 
with it’ [Less-Eval]. 

There was evidence in their lesson evaluations to suggest that, as the project 
progressed, the teachers were becoming more aware of knowing when to intervene 
and who to intervene with and also used the information from Screen Capture to 
inform them as to when the students were ready for them to progress with the lesson 
content. This took the form of suggestions as to how they might manage different 
pedagogic situations differently or how they would redesign tasks to build in 
opportunities to solicit students’ responses. 
                                                
1 The Live Presenter feature enabled the selected handheld display (and key presses) to be wirelessly 
displayed to the whole class through the data projector. 
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Promoting whole class discourse 

A common reason cited by the teachers for the use of Screen Capture was with the 
intention that it would promote discussion and communication in the classroom. The 
outcomes of this were positively reported by one teacher, who said ‘Seeing each 
others’ work gave a wider discussion through the class than what normally happens 
between students seated next to each other’ [Less-Eval]. The nature of this discourse 
varied. In the observed lessons it tended to be a more teacher dominated discourse of 
instruction and explanation, but there was evidence in two classrooms of the teacher 
using the Screen Capture view as a prompt for the students to discuss amongst 
themselves prior to feeding back their thoughts to the whole class.  

Promoting and supporting peer assessment 

The diversity of student outcomes that Screen Capture made public resulted in several 
examples from the classrooms in relation to the opportunities for both peer- and self-
assessment. The following quotes provide rich evidence: 

The students could ‘learn from each other and see their mistakes’. [Less-eval] 

Some students also watched to get ideas and support. [Less-eval] 

The sharing of thoughts at the half-way stage led in several cases to students 
checking some of the declarations that had been made by their peers. [Less-eval] 

It is really fantastic to see how much the students learn by just looking at each 
other on Screen Capture. [Less-eval] 

Other teachers were more specific about how the use of Screen Capture had supported 
the students to communicate their mathematical ideas and associated thinking, again 
leading to improved responses as a result of viewing the responses of their peers.   

Privileging mathematical generalisation 

An initial aim for this pilot study was to actively encourage the teachers to consider 
the mathematical topics for which sharing a variety of students’ responses would have 
a clear mathematical purpose. The teachers responded to this challenge very 
positively and some rich mathematical examples were generated. The underlying 
principle for all of these tasks was to create a shared learning space through which all 
students’ contributions contributed to the ‘big picture’ and, with careful teacher 
questioning and prompting, the students were able to make sound mathematical 
generalisations. The sort of mathematical aims that the teachers proposed were for 
students to explore the function family y=ax ‘to see how the value of a will have a 
different impact on the graphs’ [Less-eval] and ‘that there are infinite number of 
straight lines through a certain point’ [Less-eval].  

The major feature of these lessons was the emphasis on similarity and 
difference (two fundamental mathematical concepts) and the teachers made particular 
comments in relation to both of these with respect to how Screen Capture facilitated a 
new approach to the mathematics: 

After some exploration there were 16 screens with all different situations. [Less-
eval] 

I wanted the students to ‘see the different lines that they had all drawn through the 
same point’ [Less-eval] 

I wanted Screen Capture to ‘show a variety of results... the idea being that we 
could all see that right angled triangles gave the right solution’. [Less-eval] 
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One teacher justified this approach by saying ‘I needed every student to see 
many different screens to come to the generalisation. If they only see their own screen 
they lack a global view.’ [Less-eval]. In these examples Screen Capture enabled the 
use of the shared learning space to focus the students on the common part of the task. 
This sense of a collaborative learning environment was captured by another teacher 
who wrote, ‘We are in this together – the knowledge is shared – not 25 individuals’ 
[Less-eval]. Several of the teachers commented that they would be keen to further 
develop the mathematical TI-NspireTM activities which would exploit this use of 
Screen Capture. 

Increasing sample sizes (within statistical work) 

An interesting mathematical use of Screen Capture emerged from three lessons in 
which the Screen Capture view was used with purpose within lessons involving work 
in statistics. In these three cases the teachers explicitly commented on how the 
mathematical relevance of sample size could be promoted to the class by seeing 
everybody’s data. In one case this was ‘to show that when students showed the same 
RandSeed number, all screens in the next Screen Capture showed the same random 
number’ and in another to ‘take a snapshot of how many students were getting a better 
estimate – to tally up-front’. This suggests a potential use of Screen Capture which 
might be worth developing further within the design of TI-NspireTM activities for use 
with TI-NspireTM NavigatorTM. 

Enabling mathematical sorting 

One lesson attempted to use the students’ Screen Capture displays as objects for 
sorting into those which did and did not have a particular mathematical feature. 
However, the current functionality of TI-NspireTM meant that, as the screens 
automatically ‘snap to grid’ it was not so easy to make obvious to the students where 
the boundaries of the groups lay as the screens were continuously reordered in fixed 
grid layout.  This also highlighted the facility to colour code the individual screens as 
an alternative way to draw attention to particular mathematical features as potential 
future functionality within Screen Capture view. 

Conclusions 

The analysis of the emergent practices that the teachers developed revealed that TI-
NspireTM NavigatorTM was used to: 

 
• develop new and support existing formative assessment 
practices; 
• enable the development of innovative mathematics tasks; 
• support teachers’ lesson planning to include desired pedagogical 
approaches, lesson organisation and classroom management strategies; 
• support the use of the TI-NspireTM handhelds for individual and 
whole-class work. 
 
In conclusion the research reported in this paper has provided an insight into 

the emergent practices of teachers’ uses of one of the features of the TI-NspireTM 
NavigatorTM system. The findings suggest that the ICT offers opportunities for 
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teachers to both rethink the design of ICT-based mathematical tasks for collaborative 
learning approaches and their underlying pedagogical approaches.   
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Roles of Research in the Professional Development of Mathematics Teachers 
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This paper reports on an empirical study which investigated ways in 
which research is presented in CPD initiatives and the impact research 
utilisation in professional development has on teachers.  Data consisted of 
qualitative responses to on-line and electronic questionnaires, field notes 
of discussions and observations which were validated by the participants. 
Data was analysed using a process of constant comparison (grounded 
theory).  The analysis offers descriptive categories for ways in which 
research is used in CPD and for effects research utilisation has on 
teachers. We conclude that using research is an effective means, although 
perhaps not the only one, for teachers to becoming aware of different 
perspectives about teaching and learning, to engage in deep thinking and 
to gain confidence in their thinking.   

Keywords: research utilisation, professional development 

Introduction 

Hargreaves (1996) opened the annual lecture to the Teacher Training Agency in 1996 
with the statement “Teaching is not at present a research-based profession” and he 
argued that teachers were not using research in their professional decision making as 
they considered research to offer little help with or give useful insights into the 
practical issues of the classroom. 

There is a wealth of recent research on professional development for 
mathematics teachers. Joubert and Sutherland (2008) conducted a review of such 
literature including some 200 publications and categorised the literature in five 
sections: what is meant by CPD, complexity of professional knowledge; professional 
knowledge for teachers of mathematics; change and professional development; and  
important characteristics of ‘effective’ CPD.  None, however, seemed to address 
research utilisation.  In a broader context of education in general, there seems to be 
some although limited research about the use of research in the professional 
development of teachers. This is confirmed in the systemic literature review on the 
use of research to improve professional practice in education by Hemsley-Brown & 
Sharp (2003) who argue “while the subject of practitioners’ use of research has 
attracted considerable debate, there is limited empirical evidence on this subject” 
(Hemsley-Brown & Sharp, 2003, p454). They considered Zeuli’s work (1994) on how 
13 US teachers use research findings as offering the most pertinent evidence based 
study.  Zeuli suggests teachers only consider using research findings or find research 
credible when it matches their own personal experience in classroom practice.  He 
therefore advocates more sustained opportunities to link findings from research with 
classroom practice.  Rhine (1998) argues similarly when he explores the value of 
research for the development of teachers’ knowledge base in professional 
development, referring to research-based professional development programs such as 
the American Cognitively Guided Instruction (CGI) and Integrating Mathematics 
Assessment (IMA).   He also suggests that as research offers so much knowledge and 
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teachers can not retain, process and utilise this at one moment in time, research should 
be an available resource for teachers when they feel they need to and teachers should 
be offered professional development to help them accumulate that knowledge.   

The study we report on in this paper was part of the Researching Effective 
CPD in Mathematics Education (RECME) project, a large research project funded by 
the National Centre for Excellence in the Teaching of Mathematics (NCETM) and 
explored factors of effective CPD for mathematics teachers. One of its five aims was 
to identify the different roles, if any, research plays in professional development 
undertakings. In this paper we aim to give further insights into these roles through 
descriptive categorisation of empirical evidence we obtained from researching 30 
ongoing CPD initiatives. 

The Study 

The RECME project was a short term (15 months) project with a data collection 
period from January to July 2008.  The non-interventionist project investigated 30 
ongoing CPD initiatives representing different models of CPD for teachers of 
mathematics in England. Four of these initiatives did have some other involvement 
with the NCETM: one had received a grant, in two the NCETM was involved as one 
of several organisations supporting a network, and one concerned a network that was 
being led by the regional NCETM coordinator.  However, no one of the RECME 
research team was involved in these NCETM activities. Overall, about 250 teachers in 
pre-primary, primary, secondary, further and adult education settings were involved in 
these initiatives. The project adopted the theoretical framework that all human 
activity, including the learning of teachers, is historically, socially, culturally and 
temporally situated (Vygotsky 1978). This suggests that the experiences and contexts 
of teachers will have a major influence on their learning and implies a need to pay 
attention not only to the situation, the opportunities and the context of sites of learning 
(in this case initiatives of professional development), but also to the individuals taking 
part in professional development. Importantly, the philosophical underpinning of the 
project was one of co-constructing meaning with teachers, researchers and other 
stakeholders. The data we obtained for the study we report on in this paper reflects 
this and contains self-reported data from teachers and CPD organisers.  We are very 
aware that such data should be treated with caution, however we feel its use is 
appropriate here because we wanted to find out how participants to CPD were 
experiencing research utilisation. Details and descriptions of the full data set, the 
research design and case studies can be found in the final RECME report and other 
publications (NCETM 2009; De Geest et al 2008). 

To find out the different roles of research in professional development for 
teachers of mathematics we addressed the following research questions:  
1. What is the effect of ‘research involved CPD’ on teachers taking part in the PD?   
2. In which ways is research presented and used by participants in the CPD 
initiatives?  

Different data sets were used to address the two research questions. The study 
was conducted using a constant comparison approach from grounded theory with 
clearly defined analysis questions (mentioned later) looked at from a social 
constructivist theoretical perspective (Vygotsky 1978), i.e. what are the opportunities 
and the context of the initiatives of professional development and what are the 
experiences of the individuals taking part in professional development.    

Data collected and analysed for the first research question consisted of 
qualitative answers to questions in the online questionnaire, which was completed by 
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92 of the teachers participating in the RECME project.  It had one specific section 
related to research: “Are you aware of any research evidence underpinning any CPD 
which you have been involved in?” If yes, the follow-up question was asked: “You 
indicated that you are aware of research underpinning some of the CPD you have 
undertaken. We are interested in whether this influenced the way you felt about the 
CPD. Please explain here”. Further data was found by searching for the word 
‘research’ in all the qualitative responses to this questionnaire. The analysis question 
used in the constant comparison of this self-reported data was: “what change are 
teachers reporting as a result of working in a research based or research informed 
CPD initiative?”  

Data collected and analysed for the second research question consisted of 
information supplied by the thirty organisers in electronic questionnaires, notes of 
discussions, and observation notes of the CPD meetings made by the research team 
which were sent back to the organisers and participants for validation and 
amendments.  The analysis question used in the constant comparison was: “in what 
format(s) does ‘research’ present itself in the participating CPD initiatives?” 

Findings 

Overall, about three-quarters of the CPD initiatives (23) in the sample entailed some 
form of research in their set-up and running. We call this ‘research–involved CPD’. 
About half of these 23 initiatives that involved some form of research also had HEI 
involvement. Of the 92 respondents to the on-line questionnaire precisely half stated 
that they were aware of research underpinning the CPD and offered insights in how 
this had influenced the way they felt about the CPD.  We will first report on our 
findings regarding the effect of research-involved CPD on teachers. Then we will 
consider in which ways research was presented and used by participants in these CPD 
initiatives. 

The effect of ‘research involved CPD’ on teachers 

As a result of taking part in a research-involved CPD initiative, teachers reported 
changes in various ways relating to their classroom practice, their further professional 
life and their knowledge development.  In particular, using research seemed to offer 
teachers effective means of becoming aware of different perspectives about teaching 
and learning, to engage in deep thinking, to gain confidence about their own thinking, 
to trust the validity of the ideas offered and to have thus the courage to try out these 
ideas on the classroom, and to give status and credibility to the CPD initiative itself 
and to the teacher.  We expand on these descriptive categories in more detail: 

Raised awareness  
Teachers reported raised awareness about research, current thinking and information 
on existing practice is ‘out there’ relating to teaching and learning which can also be 
of use in the classroom.  For example: 

I am taking part in a Masters in Maths Education and it has made me realise what 
a wealth of research there is to read and use in teaching.  

I liked knowing that I am aware of current thinking, research and best practice. 

I have taught for 21 years and have become a far better teacher in the last few and 
am only now becoming more aware of what is going on out there [as a result of 
using research]! 
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Stimulate thinking about teaching and learning 
Teachers reported feeling stimulated in their thinking about teaching and learning, 
feeling stimulated to research their own practice and to engage with research literature 
as a result of the research-involved aspect of their PD. For example: 

“It's like a zoom lens that is based around everyday practice and involves 
observations and recording that I would do in any case. It has stimulated my own 
thoughts re practice and introduced me to academic research I might not 
otherwise have accessed. It has stimulated thinking and debate amongst us three 
participants in the research” 

“I have read about how Chinese teachers are taught how to enable children to 
learn mathematics, particularly with regard to ensuring that their own subject 
knowledge is sufficiently developed to enable them to explain concepts correctly. 
This has caused me to question my own subject knowledge and develop it further 
in the context of enabling me to teach maths more effectively” 

“The National Strategies made very explicit some of their source materials. I like 
this. There's an integrity about it and it also invites challenge and different 
viewpoints. To simply be told a way of doing something without acknowledging 
the source feels patronising. I like it when people expect me - and trust me - to 
think” 

Affirm and/or develop the professional self   
The teachers reported how the research aspect of their CPD affirmed their perceptions 
of their professional self: how they think about and evaluate themselves as teachers, 
leading to confidence in their professional self. They also reported how working on 
their existing interests and understanding led to a deepening development of their 
professional self which felt satisfying.  For example:  

“The research validated what I already knew and therefore gave me increased 
confidence to use new techniques, for example Swan”  

“I found [some previous CPD that used research] so fulfilling, leading to me 
doing some class based research into self esteem.  This was definitely a high in 
my professional career and I was asked to write part of a national strategy as a 
result of this work” 

“It has made me research an area of the curriculum about which I am strangely 
passionate, reflect on my own understanding and practice, collect and collate 
evidence and share this with fellow maths enthusiast within my school and the 
group” 

Confidence to act 
Teachers reported that knowing that the CPD they were undertaking was underpinned 
by evidence from research made them feel confident to act: to take further part in 
CPD and to apply research ideas to their practice as it has been shown to ‘work’. For 
example: 

 “I feel much more motivated by CPD that is underpinned by research as I know 
that people have really tried things out with children rather than made something 
up and hoped for the best!”  

 “XXX [name of project] project provided the evidence that Collaborative practice 
was the way forward in improving mathematics teaching - gave me and the other 
teachers confidence” 

 “Having research that underpins the CPD that we are doing shows us that there 
are already results which will prove that what were doing is likely to benefit both 
teachers and pupils”  
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Gain status and credibility 
Teachers reported that research-involved CPD gives credibility and status to the CPD 
initiative itself and to the teacher’s professional thinking and activities.  For example: 

“I think it gives the programme more status it isn't just a maths club it is 
something important” 

 “It adds more credibility to what you are learning”  

“It makes me feel that I can justify my interest in the approach to those above me 
in the line management structure”  

What surprised us in this study was the lack of negative responses to research 
utilisation by the teachers– only one response contained a negative element and 
mentioned not finding it easy to read papers.  Perhaps a question such as ‘what do you 
consider barriers to engaging with research evidence in your professional 
development’ would have given more insights into negative aspects of research 
utilisation.   

‘Research–involved CPD’  

This section reports descriptive categories of how research presented itself to the 
participants of the CPD in the 30 professional development initiatives that were part 
of the RECME project. Our analysis suggests five descriptive categories: reading 
research literature; using resources that have been developed based on research; 
research-inspired CPD; being part of a research project; doing research as CPD and 
research-informed CPD which we will discuss next in more detail. These categories 
are not mutually exclusive and indeed in several initiatives a combination of these 
were present.  

Reading research literature  
This refers to participants reading specific research literature.  This literature can be in 
the form of published research papers for example  Hallam & Ireson (2006); 
summaries of learning theories compiled by organisers of the CPD who have a 
background of working in HEIs, for example on Piaget (J. Piaget 1950, 1953; J. 
Piaget & Szeminska 1952); summaries from other documents, for example from Swan  
(Swan 2006, 2005); chapters from books or short publications, for example Black et 
al. (2002).  The literature tended to be selected by the organisers of the CPD who had 
more (expert) knowledge of existing research than the other participants.  The data 
indicated that in most cases the selected literature was of immediate and clear 
relevance to issues worked on in the CPD initiative and was often chosen as a result 
of issues raised, or interests declared in certain topics by the participants. In a few 
cases the readings included also non mathematics-teaching research, such as research 
methods and other more academic research. Although this was not therefore ‘directly 
relevant’ to issues raised by the participants, organisers of the CPD considered this 
relevant to the aims of the CPD initiative, for example the reading of research 
methodology was part of a masters course and thus required by university standards 
and regulations.  ‘Reading’ varied from reading literature as ‘gap’1 task between 
                                                

1  ‘gap’ tasks are activities that the teachers were asked to engage with between 
their CPD sessions.  These gap tasks might involve trying out an activity with 
students in their classrooms, looking at students’ work or reading something 
related to the CPD, such as in this instance, a research article. 
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sessions to reading in meetings, discussing and interpreting the text, and discussing 
how it applied to practice.  

Using resources that have been developed based on research  
These are resources that have been developed as part of research into pedagogies and 
didactics related to the learning and teaching of mathematics and/or have been refined 
and evaluated as being effective learning resources through a research process.  
Examples of these resources and the research they are based on are an ‘active’ 
learning approach (Swan 2006), Realistic Mathematics Education originating from the 
Freudenthal Institute in The Netherlands (Van Den Heuvel-Panhuizen 2003).  

Research inspired CPD  
These are instances where research findings and literature are used implicitly rather 
than explicitly.  Often these concern theories about ‘ways of working’, such as 
learning collaboratively, without making explicit reference to which research or 
publications it was based on.  An example is when the organiser of the CPD, who 
might have in-depth knowledge of the research that inspired the CPD, plans the CPD 
activities by building on that research but without exploring the research itself with 
the other participants of the CPD.  At other times ideas from research papers were 
used as a starting point, as a vehicle for triggering discussion, exploration, reflection 
and experimentation.  Although the findings of the research could be mentioned, it  
does not involve the reading of papers by all participants.  In these cases the original 
meaning of the research and its findings might get re-constructed.  

Being part of a research project 
Three of the initiatives involved teachers taking part in research projects.  One was an 
action-research project funded by an outside organisation and led by an HEI which 
offered optional accreditation towards a Masters degree. The research project focused 
on teachers evaluating the introducing of an ICT resource on their teaching practices 
and students’ learning. The second research project consisted of being part of a 
doctoral research study.  In this case, the doctoral researcher who was also the 
organiser of the CPD worked collaboratively with the teachers who are acting as 
research assistants. The third case concerned a two-year Master’s in mathematics 
education course that at the same time was a research project.  The project researched 
teachers’ professional and personal development while undertaking postgraduate 
research study with teachers acting as co-researchers. 

Doing research as CPD 
We could identify clearly eight initiatives where teachers were given the opportunity 
to develop professionally by doing research.  In these instances doing research was 
part of the organisation and planning of the initiative in that they led or could lead to 
accreditation towards a Master’s degree which required the candidates to conduct 
their own research projects.  Three were part of a Master’s degree, five were 
potentially so in that the teachers could opt for masters level accreditation.  There also 
was one initiative that was without accreditation but part of a research project and 
involved the teachers as active co-researchers (this initiative is also described in the 
category ‘being part of a research project). Although other initiatives included, to 
different extents, trying out new ideas and reflecting on professional activities we did 
not include these in this category of ‘doing research as CPD’ because we could not 
ascertain these activities were systematic.  
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Conclusion and limitations of this study 

We found that three quarters of the CPD initiatives which were researched as part of 
the RECME project entailed some form of research in their set-up and running, 
offering a different picture to the one Hargreaves reported on in 1996 of little research 
utilisation in the teaching profession and professional development. This could 
indicate that professional development provision has changed since the mid 1990s and 
research now has entered its discourse. We found that the use of research in CPD does 
not present itself in one format, but that there are wide-ranging ways. Our analysis 
suggests five descriptive categories. Interestingly, only half of the initiatives that 
involved some form of research also had HEI involvement, suggesting research is also 
considered useable and relevant by those who are not part of the research community 
which tends to be based at HEIs.  

Contrary to observations from the mid 1990s (Hargreaves 1996) teachers in 
this study considered the use of research to be helpful in ways that relate to their 
classroom practice, their further professional life and their knowledge development 
which could be because in all cases in this study research was used from a practical 
point of view, confirming research findings from Zeuli (1994) and Rhine (1998). The 
analysis suggests that in the CPD initiatives that involved a research aspect, the 
teachers were asked to think and reflect about the research that was presented in the 
CPD and were as such cognising and reflective agents (Brown and Burko, 1992 
reported in Cooney, 1994).  Teachers evaluated such opportunity to think and reflect 
positively. Of course, these findings do not mean that similar effects could not be 
achieved in other ways than through research utilisation.  However, we suggest that 
using research is an effective means, although perhaps not the only one, for teachers 
to becoming aware of different perspectives about teaching and learning, to engage in 
deep thinking, and to gain confidence in their thinking.   

Our analysis flagged up four major issues for discussion: 
• We found that at times the original meaning of the research and its findings 

may have been reconstructed, interpreted or ‘watered down’ without the 
original text being studied by all the participating teachers.   Although such 
interpreted research was still used as a starting point or vehicle for exploring 
of and reflecting on issues in the classrooms, it raises the question to which 
extent this can still be considered as the use of research, and how the 
reconstructing of research findings affects the teachers’ knowledge base.  

• We identified effects of the use of research in CPD as reported by teachers. 
The question remains to which extent these differ from CPD that does not 
involve research aspects. 

• The study did not identify barriers to engage with research utilisation in 
professional development.  What are these and can they be overcome? 

• What is meant by ‘doing research’?  For example, when does trying out new 
ideas in the classroom, reflecting on the effects of the changes become 
research? What are the boundaries between reflective practice and doing 
‘research’? 
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Using Realistic Mathematics Education with low to middle attaining pupils in 
secondary schools  

Paul Dickinson, Frank Eade, Steve Gough, Sue Hough 

Manchester Metropolitan University Institute of Education 

This paper provides an account of two projects involving the trialling of a 
new approach to teaching in secondary schools in England. The method 
being trialled is based on Realistic Mathematics Education (RME), 
originally developed in the Netherlands. The paper focuses on the 
underpinning of RME, provides an overview of the associated projects, 
the research methods and initial findings, and explores emerging issues 
from the projects. 

Introduction 

The Smith Report (2004) stimulated a lot of interest in applications of mathematics 
and supporting learners in becoming mathematically literate.  Consequences of the 
Smith Report included the introduction of GCSE assessment in mathematics which 
makes greater use of contextual questions and the piloting of a ‘twinned pair’ of 
GCSEs, one of which focuses entirely on the application of mathematics.  An 
overriding issue for many mathematics educators is how we support learners in 
developing application skills as well as learning the normal content associated with 
mathematics without separating these out and increasing the time allocated to 
mathematics teaching. 

This paper explores the conjecture that it is possible to develop both content 
knowledge and problem solving skills using an approach based on Realistic 
Mathematics Education (RME). 

Background 

Mathematics in England 

The mathematics curriculum in England has undergone radical changes in the last 
fifteen years with the introduction of a variety of forms of formal and informal 
assessments, emphasis on functional skills and the advice offered to teachers in how 
they might support learners. A recent study would suggest that despite the investment 
in mathematics there is little evidence that the standards in mathematics have 
improved (Hodgen et al. 2009) 

Clearly the strategy has been effective in changing some of the patterns of 
behaviour of teachers and in shifting the emphases on different parts of the 
mathematics curriculum. However, the work of Anghileri et al. (2002), Brown et al. 
(2003) and Hodgen et al. (2009) would suggest that there may be grounds to doubt 
that these changes have been as effective as the government would wish us to believe. 
Despite apparent short-term improvements as measured by the end of key stage 
assessments,  Smith (2004), Brown (2003) , Anghileri (2002) and Hodgen et al. 
(2009) all highlight worrying concerns about longer-term conceptual understanding, 
procedural fluency, and the ability to apply mathematics. Indeed Askew et al. (2010) 
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argue that, in England, procedural fluency and conceptual understanding are largely 
seen as mutually exclusive aims. 

The Smith Report (2004) suggests the need for “… greater challenges… 
harder problem solving in non-standard situations, (and) a greater understanding of 
mathematical interconnectedness …”. The report also indicated that the mathematical 
skills developed by pupils age 16 are not concerned with “ the growing mathematical 
needs of the workplace… mathematical modelling or ... problems set in the real world 
contexts.” Smith also suggested that in comparative terms “England seriously lags 
behind its European competitors” in terms of the number of pupils achieving an 
appropriate level 2 qualification. Hodgen et al. (2009), suggest that, while exam 
passes have risen dramatically in the last 30 years, pupils’ underlying understanding 
of mathematics has changed little.  

In summary, we see the above as evidence of a need to explore and develop a 
practical pedagogy of mathematics education that supports pupils’ conceptual 
understanding, problem-solving skills and the use of these in real world situations. 

Mathematics in the Netherlands 

The Freudenthal Institute, University of Utrecht was set up in 1971 in response to a 
perceived need to improve the quality of mathematics teaching in Dutch schools. This 
led to the development of a research strategy, an approach to teaching and to a theory 
of mathematics pedagogy called Realistic Mathematics Education (RME). RME uses 
realistic contexts and a notion of progressive formalisation to help pupils develop 
mathematically. A strong feature of RME is the simultaneous and integrated 
development of conceptual and procedural knowledge. Pupils engage with problems 
and scenarios using common sense/intuitions, collaboration with other pupils, well 
judged activities and appropriate teacher and textbook interventions. (See Treffers 
(1991) and Treffers et al. (1999) for further discussion of RME.)  

At a surface level, RME resonates strongly with progressive approaches used 
in England where investigative and problem-solving strategies are utilised and where 
pupils are encouraged, as a whole class, to discuss their work to resolve important 
issues. One difficulty with this approach to teaching in England is that pupils may 
stay with naïve mathematical strategies and are often unwilling to move to more 
sophisticated strategies and procedures. The need for a teaching and learning 
trajectory is clear. Through intensive research, trialling and re-evaluating materials 
and approaches, Dutch mathematics educators have developed a variety of ways of 
encouraging and supporting pupils’ mathematical progress. So, for example, pupils 
remain in context throughout and stay with a topic for a much longer period of time 
than would be usual in England.  

Associated Projects 

MiC in the US 
In 1991, The University of Wisconsin (UW), funded by the National Science 
Foundation (USA), in collaboration with the Freudenthal Institute, started to develop 
a curriculum and pedagogy based on RME (See Romberg and Pedro (1996) for a 
detailed account of the developmental process and van Reeuwijk (2001) for an 
account of the care taken in developing one aspect of the scheme.) The first version of 
Mathematics in Context (MiC), together with comprehensive teacher materials, was 
published in 1996/7 and has undergone several revisions since then.  
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MiC in the UK 
The Gatsby Foundation agreed to fund Manchester Metropolitan University (MMU) 
to run a project based around trialling RME (utilising MiC) over a three year period. 
The Economic and Social Research Council (ESRC) also agreed to fund an 
examination of how teachers’ beliefs and behaviours change as a result of engagement 
in the project (see Hanley et al. (2007) for an account of the research into the changes 
in teachers involved in the project). 

The project focused on three main issues: developing an understanding of 
RME in an English context, understanding how learners develop, and supporting 
teachers to develop practical skills and a deep knowledge of RME. 

In terms of pupil development over three years the project team saw evidence 
that pupils’ approach to solving problems changed and that this influenced how they 
understood the mathematics. More details of this are given below; for other findings 
of the project see Dickinson and Eade (2005). 

MSM in the UK 
In 2007, as an extension to the work of the Key Stage 3 project, The Making Sense of 
Mathematics (MSM) project began.  This was aimed at Foundation Level GCSE 
students (Years 10 & 11) with new resources being produced as a result of 
collaboration between the Freudenthal Institute and MMU. These resources consist of 
11 booklets which together cover the Key Stage 4 Foundation level curriculum. These 
booklets build upon the experiences gained from the Gatsby project and take account 
of difficulties highlighted by the Key Stage 3 teachers, such as the need for RME 
based materials which feature British contexts and are more closely linked to UK 
national tests.  

The MSM project has involved Foundation level classes from 6 schools in the 
first cohort and 10 schools in the second cohort. MMU has supplied resources to these 
schools and has provided ongoing support in the form of twilight training sessions and 
school based observations. Feedback given by the teachers has been used to revise the 
materials which are currently in their second version. 

Key findings from the MSM project to date show influences on both teachers 
and pupils. For the purposes of this paper, we focus on pupils, and the similarities 
between KS3 pupils working with MiC and KS4 pupils working with MSM. 

Data Analysis 

As mentioned above, in both UK based projects (MiC and MSM), data was collected 
from project pupils and ‘control’ pupils. In terms of the control, pupils were drawn 
from parallel classes in the project schools and also from non-project schools whose 
intake and performance were similar to those in the project. Project and control were 
matched either in terms of their KS2 SATs scores (for the MiC project) or in terms of 
GCSE target grades (for MSM).  

While data was collected from project and control groups in a number of ways 
(including national test data and attitudinal questionnaires) the focus for this article is 
on what we termed ‘problem solving’. 

In the problem solving test, pupils were given ten minutes to complete each 
question. Consequently, much more detailed solutions were produced, and it was 
possible to analyse methods and approaches in addition to whether or not pupils had 
arrived at a correct answer. Since one of the aims of the project was to construct an 
account of how pupils develop mathematically, we needed an assessment which 
would provide data on this. The programme team was also mindful to take account of 
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Hawthorne  related issues (Landsberger 1958) associated with simple tests of content 
gains and was therefore looking to find evidence of significant differences in pupils’ 
approaches to solving mathematical problems. After substantial trialling, five 
questions were produced across the attainment targets and all project and control 
pupils worked on these individually over two lessons. The questions come under the 
general heading of ‘problem-solving’ in that they required pupils to ‘mathematise’ 
situations which they had not met previously. For further details of the original MiC 
problem solving tests, see Dickinson and Eade (2005) 

The data discussed here are from Year 7 pupils for MiC (sample sizes 100) 
and Year 10 and 11 pupils for MSM (sample sizes 50). With so many schools and 
pupils involved, we are confident that the data gathered is reliable. 

 We wish here to focus on two topic areas, area and fractions. We have chosen 
these firstly because the traditional treatment of these topics at secondary level tends 
to be procedurally dominated and secondly, because they exemplify nicely the 
differences between project and control pupils that were noticed across all curriculum 
areas. We have also focussed on results from Year 7 pupils who were in  the lower 
40% of the attainment range for KS2 SATs scores) so that results from the two 
projects can be compared more easily. 

Area 

Here, the identical question was given to pupils in both projects, with remarkably 
similar results. The question was 

 Find the area of the shape shown below. 
 Show carefully how you worked it out. 

 
 

 
 

 

 

 
If we class  ‘drawing cm squares and counting’, ‘splitting into rectangle and 

triangles’, and ‘moving a triangle to create a rectangle’ as ‘sense-making strategies’ 
(as against simply performing a numerical calculation), 74% of MiC and over 80% of 
MSM pupils attempted to make some sense of the problem (with over 50% achieving 
the correct answer).   The corresponding figures for control pupils were 32% and 
37%. Interestingly, control pupils who ‘made sense’ of the problem tended to get the 
correct answer; it would seem that for these pupils they can either do the question or 
they can’t, there is no middle ground. In project groups, we see around 25% of pupils 
who cannot get the correct answer yet are able to make a sensible attempt (for 
example through counting squares). 

Indeed the vast majority of control pupils adopted a purely numerical method, 
often simply adding, multiplying, or in some way averaging the numbers on display. 
This is despite the fact that all will have counted squares when initially introduced to 
area.  There is a strong suggestion here that introducing formal mathematical 
knowledge at too early a stage in a pupils’ development will replace any more 
informal ideas and leave the learner with no knowledge at all once a rule is forgotten 
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(see Anghileri (2002),  Hart et al. (1989), and Boaler (1998) for similar conclusions in 
other mathematical topics). 

Fractions 

In the Key Stage 3 (MiC) project, the following questions were set. 
 

a) Tape is sold in pieces 1/3  of a metre long. 

 Show how many pieces you can cut from a piece 4 metres long. 
    b) 3/4 of this glass is full of orange.  
 
 
 
 1/3 of this glass is full of orange. 
 

Explain whether you can pour the second glass 
into the first without it overflowing. 

In terms of correct responses for lower ability groups, the 
following results were obtained (n=100) 

 
Question Number Project Pupils Control Pupils 

2(a) 42%   7% 
2(b) 54% 12% 

 
While the differences here are quite stark a further significant feature, in 

addition to the proportion of correct answers, was the number of pupils who drew 
something in order to make progress with the problem. 50% of project pupils 
attempted to draw something in part (a), compared to only 23% of control pupils. 
Similarly in part (b), the figures were 74% and 49% respectively.  

In the Key Stage 4 project (MSM) a different fractions question was used, as 
evidence from another trial in a local school had suggested some interesting results. 

The question was simply 
Find   ¼+½ 
Do you think you have got this right? Explain why. 

Given that these pupils would have studied fractions for at least 7 years, the 
data gathered was somewhat shocking. In terms of pupils getting the correct answer, 
results were (n=50 in both cases) 

 

 % correct 
Target grade C 

% correct 
Target grade D/E 

Project 83% 57% 
Control 72% 30% 

 
A striking feature when analysing pupils’ work was that in the control groups 

one only had to look at the work of a small number of pupils to know exactly the 
method that had been taught to them and the procedure that their teacher wished them 
to follow. Script after script was identical in how pupils attempted to solve the 
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problem (two of the most common ways are shown in Appendix 2).It then appeared 
that more able Foundation level pupils remembered the method and got the answer 
correct, but if they forgot the method (which was often the case for D/E level pupils) 
they produced something that amounted to mathematical nonsense.  In contrast to this, 
project pupils seemed to have a variety of approaches at their disposal and were able 
to make sense of the problem.  

 It was also interesting that when asked for reasons, project pupils often drew 
something, talked about 4 quarters making a whole and hence a half being two 
quarters, or referred to pizzas, cakes, etc. Control pupils invariably referred to a 
numerical method, often simply describing what they had done. At target grade D/E, 
over 50% of pupils got the answer 2/6 with the vast majority believing that they were 
correct and citing the fact that 1+1 =2 and 2+4=6 as their justification for this. No 
project pupils at this level got the answer 2/6. We see this as further evidence that 
pupils taught an RME based curriculum are more able to make sense of their 
mathematics, both in achieving answers, and in reasoning why they feel they are 
correct. On the other hand, pupils taught formal algorithms have no other 
mathematical resources to fall back on if the algorithm is not remembered correctly. 
One control pupil (Year 10 target grade D/E), when faced with ¼ +½ commented 
tellingly that “I am stuck with this question because I forgot the method”. 

Why do RME based approaches lead to different results and (in particular) 
different methods of solution? 

Use of contexts 

In RME, contexts are used not only to illustrate the applicability and relevance of 
mathematics in the real world, but also as a source for the learning of mathematics 
itself.  Contexts can be taken from the real world, from fiction or from an area of 
mathematics that students are already familiar with. It is important that they should be 
sufficiently real for students to be able to engage with them so that they are solving 
problems which make sense, but also critical that they reflect the mathematical 
structures that we want the students to work with.  The contexts used are extensively 
researched and differ significantly from those found in standard UK textbooks.   

Students are encouraged to make sense of the context using their experiences, 
intuitions and common sense. They then stay in context, and remain at a 
sense-making level, while they develop mathematically. The word ‘realistic’ is used 
to emphasise that students are able to imagine the situation.  

Experience shows that, through staying connected with the context, students 
are able to continue to make sense of what they are doing, and do not need to resort to 
memorising rules and procedures which have no meaning for them.  ‘Mathematics’ 
and ‘context’ are not separated – to experience success in one implies success in the 
other.  So, for example, when working with area, the notions of reallocating parts of a 
shape and visualising arrays are predominant. If a formula or rule emerges, this is 
referred back to the context for validation. We believe that the benefits of this are 
clearly seen in the trapezium question analysed earlier-far fewer project pupils appear 
to view area as simply another numerical procedure. 

Use of ‘models’ 

RME provides a different view on how contexts should be chosen, and also on how 
these can then be used to support mathematical development. The use of ‘models’ is 
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crucial here (see van den Heuvel-Panhuizen (2003) for a thorough analysis of the use 
of models under RME). 

A model emerges from a context.  Initially it may be little more than a 
representation, for example a picture, suggested by the context. Later, however, these 
models become more sophisticated mathematical tools such as the number line, ratio 
tables, etc.  

Models bridge the gap between the informal and the formal and so teachers 
feel less pressure to replace students’ informal knowledge with formal procedures. As 
pupils begin to formalise their mathematics, models and contexts   support the process 
of vertical mathematisation while retaining the ‘sense-making’ element. In this way, 
the formal and informal are more likely to ‘stay connected’ in the minds of the pupils. 
This is evidenced, for example, by project pupils working with a common 
denominator in a way which makes sense to them, something which non-project 
pupils seem unable to do. Models also allow students to work at differing levels of 
abstraction, so that those who have difficulty with more formal notions can still make 
progress and will still have strategies for solving problems. 

An important part of a student’s mathematical development is the recognition 
that the same model can be used in a variety of situations and to structure solutions to 
many kinds of problems. As Boaler (1998) suggests, a traditional approach is unlikely 
to lead to pupils being able to recognise situations which are ‘mathematically similar’. 
The mathematics levels in the 1999 National Curriculum for England characterise 
students’ development by means of the procedures which they are able to perform and 
the difficulty of the numbers they are using. However, in RME, teachers use a richer 
range of descriptors to gauge students’ progress.  This includes observing students’ 
use of models, insights and reflection as well as mathematical landmarks and 
procedures (see Fosnot and Dolk (2002) for discussion of this in the context of 
fractions). 

Multiple Strategies 

One aspect of being ‘functional’ in mathematics is being able to choose the most 
appropriate strategy to solve a problem, rather than always relying on one strategy or 
algorithm. The contexts in RME are chosen to elicit many different strategies and 
students are constantly encouraged to reflect on these and refine them. Lessons will 
involve comparison and evaluation of different student strategies; a fundamental tenet 
of RME is to build sophistication into student-generated procedures rather than for 
teachers to impose a ‘standard method’ or algorithm. Evidence of this is clearly seen 
in the Key Stage 4 data discussed here. 

RME encourages the development of more formal methods from students’ 
informal methods.  However, it also allows students to continue to be able to use 
informal methods, where appropriate, rather than relying on being taught a method of 
solution that fits a certain type of problem.   

We feel that there is significant evidence here that average and lower attaining 
UK pupils can benefit significantly from following an RME based curriculum and that 
through doing so they will be able to make more sense of their mathematics and hence 
become more functional in the subject. 
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This paper presents findings on students’ experience of mathematics 
enrichment, arising from a recent and more extensive study designed to 
inform understanding of different forms and practices of mathematics 
enrichment in the UK. Four case studies were conducted, each focusing 
on a distinctive enrichment programme, namely: one set of residential 
Mathematics Summer Schools, offered by the National Academy for 
Gifted and Talented Youth; one series of Mathematics Master-classes, run 
by a Royal Institution Master-class group; an after-school outreach and 
enrichment programme, targeted at students from a disadvantaged, inner-
city area, run in collaboration with NRICH; and the United Kingdom 
Mathematics Trust’s (Junior and Intermediate) Maths Challenge 
competitions, undertaken in one school. Data were collected through 
interviews with student participants, informed by observations of 
enrichment practice. Whilst students reported a range of enrichment 
benefits, broadly related to their mathematical, and personal and social, 
development, support for mathematics learning in school, and exposure to 
higher education, their experience was more subtly related to the 
characteristics of the programme in which they had participated, 
interpreted according to more familiar experiences of learning 
mathematics in school. 

Keywords: mathematics enrichment, students’ experience, enrichment 
programmes, gifted education 

Background 

Students’ apathy towards mathematics has received much public attention in recent 
years: many are reported to be disaffected with school mathematics and to grow more 
so through their years of schooling; numbers recruited into post-16 mathematics 
education had been falling between 1996 and 2007, following longer-term decline 
across the wider science fields (Smith 2004; The Royal Society 2008). In the most 
recent EU survey on attitude to ‘science’ among young people aged 15 to 25 
(European Commission 2008), mathematics was the least popular discipline, even 
among the minority who would ‘consider’ studying ‘science’ subjects; interest in 
studying mathematics in the UK was among the lowest in EU Member States. 

Against this background, students’ participation in, and attitude to, 
mathematics have become key concerns for policy-makers and the mathematics and 
mathematics-education communities (Clarke 2004; Smith 2004). This has led to an 
increase in the number and variety of ‘enrichment’ activities, aimed at engaging 
young people in mathematics in general and at supporting and extending the 
mathematics learning of specific groups of students (e.g. those identified as being 
‘mathematically-gifted’ or belonging to ‘disadvantaged’ social groups) in particular, 
above and beyond provisions prescribed by the school Mathematics curriculum. Such 
activities include: 
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• efforts by individual teachers or Mathematics Departments to make 
mathematics learning in lessons more interesting for students; 

• school-based mathematics clubs run by teachers to supplement and enhance 
students’ learning; 

• competitions to stimulate interest in mathematics in large numbers of students 
and to identify and cultivate talent; 

• summer study programmes, popular lectures, workshops and master-classes to 
engage students in mathematics and to expand their mathematical horizon; and 

• university outreach and ‘widening participation’ activities to attract students to 
study mathematics-related courses, and to recruit, and raise the aspirations of, 
students from social groups currently under-represented in higher education or 
in mathematics-related studies and careers. 

Despite the increasing amount of activity taking place under the ‘enrichment’ label, 
the ‘enrichment’ area is under-theorised and under-researched. The term ‘enrichment’ 
is often used common-sensically, masking the range of activities which operate under 
its label (Feng 2005); outcomes of enrichment are also not well-understood. The large 
numbers of enrichment activities — not just in mathematics, but across STEM 
(science, technology, engineering, mathematics) fields — and their role and impact in 
promoting the STEM disciplines to young people are currently receiving increased 
attention from policy-makers (DfES and DTI 2006; DIUS 2008). 

Design and method for the study 

This paper presents findings on students’ experience of mathematics enrichment, 
arising from a recent and more extensive study which developed and refined a 
conceptual framework for understanding ‘mathematics enrichment’ in the UK. The 
main study itself synthesised available literature and provided new empirical 
evidence, gathered through four case studies (Bassey 1999), to inform understanding 
of different forms and practices of ‘mathematics enrichment’ emerging from the 
literature (Feng 2006): ‘enrichment’ which focuses, respectively, on the development 
of mathematical talent (e.g. Roberts 2005), the popular contextualisation of 
mathematics (e.g. Zeeman 1990), the enhancement of mathematical proficiency and 
learning processes (e.g. Piggott 2004), and outreach to the mathematically 
underprivileged (e.g. Bouie 2007). Each case study focused on a distinctive 
enrichment programme as follows: 

• one set of residential Mathematics Summer Schools for ‘gifted’ students (in 
the top 5% of the attainment range) lasting three weeks, offered by the 
National Academy for Gifted and Talented Youth; 

• one series of Mathematics Master-classes, composed of five Saturday-morning 
workshops led by different speakers each week, run by a Royal Institution 
master-class group at its local university; 

• a year-long outreach and enrichment programme, composed of weekly, after-
school classes, targeted at students from a disadvantaged, inner-city area and 
held in their local university, run in collaboration with NRICH; and 

• the United Kingdom Mathematics Trust’s (Junior and Intermediate) Maths 
Challenge competitions, undertaken in one school. 

Within each case study, the ideas and experiences of enrichment held by the staff 
organising, and the students participating in, the respective programme were explored 
through analysis of official documents and interviews with organisers and students, 
informed by observations of enrichment practice. 
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The data reported in this paper were collected through end-of-programme, 
semi-structured interviews with 40 student participants between 2005 and 2006, 
supported by observations of enrichment practice made over a more extended period 
(2004–2006). Participants were chosen in consultation with enrichment providers or 
their teachers so as to cover, potentially, a range of views and experiences of 
participating in enrichment. Interviews lasted, on average, 50 minutes. Themes were 
developed inductively from the data as well as deductively from the literature, and 
refined iteratively through constant comparison. 

‘Enriching’ experiences of mathematics 

Participants from each of the four programmes identified a range of experiences 
which they valued and perceived as ‘enriching’. Typically, students reported investing 
sustained effort into solving mathematical problems: salient features of the way they 
worked include thinking mathematically to find ways forward and identifying 
strategies from their own repertoire. This contrasts with their reported experience of 
solving school-mathematics problems, which they usually completed very quickly 
using known techniques: 

[You can’t] come up with an answer [straight-away]. You have to be systematic 
[and] build upon it. [In school], it won’t take [long to answer a question. If] they 
give [you] 6 marks, then [you do] 6 bits. […] You know what method to use. 
[Here], you don’t know. You have to work out [what’s best to do]. 

(Outreach participant) 

As such, students typically found enrichment problems more ‘challenging’ and 
‘difficult’ than problems commonly encountered in school. Although a small number 
preferred the ‘security’ of solving ‘known problems’, students generally found the 
material introduced to them interesting and relished the substantive challenge. 

In addition, a key part of the Summer Schools, Master-classes and Outreach 
involved participants in collaborative work (e.g. discussing mathematical ideas and 
working with, and learning from, adult ‘specialists’ and fellow participants): 

It was all about finding out new things and watching what other people did and 
seeing how you can improve yourself. […] You could just be together and work 
as a group, discussing [the problems], seeing what each can find out about the 
answers, sharing [ideas] in a group. 

(Master-class participant) 

In these three programmes, emphasis was placed on exploring mathematically and on 
elucidating mathematical thinking: 

[You] have to think about [the problem and] explore it a lot. It wasn’t just [getting 
to the] answer. […] The whole idea was that you explored your answers a bit 
more: [….] to get at its nature rather than just leaving an answer — to question it 
a bit more and think why. 

(Master-class participant) 

Such experiences were valued by participants of these three programmes as an 
integral part of their ‘enrichment’. Where students were able to work on Maths-
Challenge problems in class, the experience was similarly considered ‘enriching’. 

Enrichment ‘benefits’ 

Participants from the four programmes also identified a number of ways in which they 
felt they had ‘benefited’ from their enrichment experience. These relate broadly to: 
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their mathematical, and personal and social, development; support for mathematics 
learning in school; and exposure to higher education. Looking beyond these broad 
categories of ‘benefits’, however, specific experiences were more subtly related to the 
characteristics of the programme in which the student had participated, interpreted 
according to more familiar experiences of learning mathematics in school. 

For example, all Master-class and Summer-School participants interviewed 
felt that they had benefited mathematically, and personally and socially, from their 
experience. However, in the Master-classes — a programme where enrichment 
exposure was limited to a small number of weekly workshops — identified benefits 
were primarily in terms of gains in mathematical knowledge. In the Summer Schools 
— a programme where participants were in contact with one another over a relatively-
long uninterrupted period and in wider social contexts — personal and social benefits 
and mathematics-related gains were identified in almost equal measure; references to 
both were interwoven in participants’ accounts: 

[I’ve gained] a lot of knowledge, [a] lot of understanding and a lot of friends. I 
suppose I’ve gained some independence as well. I definitely understand maths 
more. And I suppose [I’ve] gained knowledge [about] how to challenge myself. 

The Maths Challenge competitions, meanwhile, were thought to be engaging 
and exciting. The quality of the Maths-Challenge problems was consistently praised: 

I didn’t know there [could be] that much fun working through these problems. I 
think that’s why I found [the Maths Challenge] enriching. […] It’s just using your 
mind so much more. [When] you open the textbook, you know what topic [the 
questions are] on. But you don’t with the Maths Challenge. [That’s] what makes it 
more exciting. 

This notwithstanding, the students interviewed gauged the ‘benefits’ they had derived 
primarily in relation to mathematics learning in school, and in some cases, particularly 
as ‘revision’ or ‘practice’ for high-stakes public examinations and as a means for 
judging their performance — even ‘ability’ — relative to other students nationally and 
in their school. The latter reflects the culture of assessment in schools through which 
the students understood the Challenges. Where ‘enrichment’ was not followed up and 
students simply ‘sat the test’, learning was thought to be limited. Indeed, some 
students had mixed feelings about the competition and its associated rewards: 

If you do well, then it [helps]. But if you don’t do so well, then you’re really 
congratulated for taking part, but you still might feel inside that you’ve not done 
very well compared to [others]. 

Similar reactions are likely to occur wherever competition is a salient feature of an 
enrichment programme. 

The enrichment ‘benefits’ identified by students, the relationship between 
‘benefits’ and programme characteristics, and students’ interpretations of their 
‘enrichment’ experience in the light of more familiar experiences with school 
mathematics are further illustrated in the following subsections. 

Personal and social ‘benefits’ 

The personal and social benefits most commonly identified across the four 
programmes were increased confidence and sense of capability, and opportunities to 
meet and work with other students. 

For Outreach participants, increased confidence and sense of capability was 
attributed to positive problem-solving experiences and the sharing of mathematical 
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ideas; seeing other participants’ endeavours and achievements was motivating and 
encouraged participants to recognise possibilities for themselves: 

[I saw others] working on [the problems. It] gave me a thirst to [prove myself], 
because at the end of the day, [we’re] the same age [and] we’ve got the same 
abilities. [You see people working] and you just think, ‘I can do it as well!’ […] 
When you actually accomplish the puzzle, [you get] self-satisfaction. [That] 
boosts your confidence. 

Meeting and working with (like-minded) students from other schools was also 
thought to be enriching in its own right. 

For Summer-School participants, confidence was derived from the whole 
(social and academic) programme, which made them feel more independent and 
motivated (generally and towards studying mathematics). Participants also valued 
opportunities to work with like-minded students of similar levels of attainment: 

Everyone wants [to] work, [which] makes it a much better [working] 
environment. [The other students are of] equal ability to you, so they’re pushing 
you [to] achieve the highest standards possible. 

Through these opportunities, participants reportedly developed better interpersonal 
skills and began to feel less isolated. 

For Maths-Challenge participants, confidence and sense of capability stemmed 
from ‘successful’ participation (defined differently by different students according to 
their prior experience) and favourable comparisons with other competitors: 

[What I particularly like is getting] a certificate at the end — that’s good. And you 
can compare your scores with your friends. […] For a certificate, you feel like 
you’ve done well at something, [and] most of the time, I do better than my 
friends, so it feels good. 

To some extent, this is consistent with enrichment goals to recognise and reward 
achievement, and to improve participants’ confidence and self-esteem through the 
competitive process. The potentially-negative connotations which may be associated 
with such comparisons, however, were not intended. No social benefit was mentioned 
by Maths-Challenge participants; neither were social experiences a part of the 
intended provision. 

Finally, Master-class participants made very few references to stimulating 
social exchanges or to having benefited socially from their experience; none reported 
any increase in mathematical confidence. This may be due to the limited time 
available for participants to build comfortable relationships with speakers and fellow 
participants, wherein stimulating social exchanges could take place. The Master-
classes were successful primarily in providing an introduction to a variety of 
mathematical topics (see below). 

Mathematical benefits 

Mathematically, participants from all four programmes felt that enrichment had 
broadened their mathematical experience and horizon. In the Master-classes and 
Summer Schools, this was brought about primarily through introducing participants to 
stimulating aspects, and unfamiliar applications, of mathematics not normally taught 
in school; in Outreach, participants were encouraged to think mathematically by way 
of the problems posed and to apply their knowledge flexibly to solve challenging and 
unfamiliar problems. In accordance with these methods, the specific way in which 
Master-class and Summer-School participants felt that their mathematical experience 



Joubert, M. and Andrews, P. (Eds.) Proceedings of the British Congress for Mathematics Education April 2010 

86 

and horizon had been broadened was through becoming more aware of the breadth 
and pervasiveness of mathematics and its applications: 

You were introduced to maths in lots of different contexts. […] It makes you see 
that maths isn’t just [about] numbers; it’s in many different things. 

(Master-class participant) 

Outreach participants, meanwhile, reported increased perseverance and improvements 
in the way they went about tackling unfamiliar problems: 

I’ve learnt a lot [in] the way I approach a question. [At] the beginning, I’d pick a 
random number [to try]. But now, [I’m] more systematic. […] And previously, if 
I couldn’t do [a problem, I’d just] sit there until the answer comes. But as the 
sessions have gone by, [I’ve tried harder] to get the answer. 

Those Outreach participants who reported greater appreciation for problem-posing 
and problem-solving also reported greater satisfaction and progress. 

In addition, the majority of Master-class, Summer-School and Outreach 
participants interviewed felt that their interest in mathematics had increased. The 
majority of Outreach and Summer-School participants also reported improvements in 
their perception of mathematics. Maths-Challenge participants, however, reported 
limited mathematical gains, perhaps because enrichment exposure was only brief; the 
majority interviewed felt that the Challenges had made no difference to their interest 
or perception of the subject. 

Support for mathematics learning in school 

With the exception of the Master-classes, which participants perceived primarily as an 
opportunity to experience stimulating mathematics that is not necessarily associated 
with the mathematics they learn in school, the remaining programmes were each 
thought to ‘benefit’ mathematics learning in school in some way. 

For Maths-Challenge participants, a key ‘benefit’ of participating in the 
competition was the support they gained for school-work through revision and 
practice afforded by the Challenges and the experience of working under test 
conditions in preparation for high-stakes public examinations: 

It gives you practice in [doing maths under] exam conditions. So it’s helpful [for 
seeing] how you would react if some exam [is] sprung on you: [to] see what you 
already know and what you don’t. [So regardless of how well you do], it’s just an 
experience that will help you for other exams. 

This confounds the fact that the Challenges were never conceived as such a means of 
enhancing school performance; interpretations of ‘enrichment’ as examination 
practice (in light of the culture of assessment in schools) were wholly unintended. 

Almost all Outreach participants felt that their enrichment experience had 
consolidated mathematical ideas taught in school, and that this was helpful to them in 
their school-work. Indeed, some students participated in the programme in order to 
remedy perceived shortfalls in their school mathematics education, treating their 
enrichment experience as extra tuition. Whilst remedying shortfalls in school 
mathematics provisions was not a part of the intended ‘enrichment’, such an 
interpretation can be understood given that participants were drawn from specifically-
targeted ‘disadvantaged’ schools. 

A minority of Summer-School participants reported becoming more aware of 
connections within mathematics — a subject which had previously been presented to 
them in a more fragmented way in school. That said, there was no evidence that 
students felt any more appreciative of school mathematics after participating in the 
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Summer Schools. Indeed, from the many contrasts participants from all four 
initiatives had made between school mathematics and enrichment, enrichment was 
unlikely to have enhanced students’ appreciation or liking for school mathematics in 
any of the four cases. 

Exposure to higher education 

Raising participants’ educational aspirations and enabling participants to gain insights 
into higher education were central to the enrichment intentions of the Outreach 
programme and the Summer Schools. Both programmes were hosted in universities 
expressly for the purpose of bringing participants into higher-education settings. The 
benefits of being in a university, however, were felt only by Outreach participants and 
those (older) Summer-School participants at or towards the end of their secondary 
education. In addition to being able to see inside a university, these older Summer-
School participants also valued the subject expertise from the institution: 

[This] is quite a good university for maths. So maths would be a good course to 
do here [because] the lecturers will know more about the subject [and] be better at 
teaching. [It’s amazing] just how interesting it is and how [deeply] you go into 
[the maths. Being] a maths lecturer, [our tutor] has told us quite a bit about what 
we’re doing and how it relates to degree and graduate work. 

Outreach participants, on the other hand, valued the prestige associated with 
‘studying’ at university and the change in environment that this afforded. The latter, 
in particular, encouraged them to adopt a more mature attitude towards learning and 
enabled them to shed the constraints associated with being interested in mathematics: 

[Being at university] makes you [feel] older [and more grown up]. People don’t 
just sit there and do nothing. […] Everyone’s working and everyone’s interested 
in [thinking] about [maths]. 

In the case of the Master-classes, although the act of exposing students to a 
university environment was thought to be enriching, exposing participants to higher-
education settings was not a central part of the conceived enrichment. Predominantly, 
participants acknowledged that the Master-classes had given them an opportunity to 
visit a university (which they thought of as a comfortable space for meeting and 
learning), but the experience of being inside a university was not associated with their 
experience of mathematics or learning. 

Conclusion 

The general consensus among participants was that enrichment presented valuable 
opportunities for them to engage in mathematics which they would not normally 
experience in school. Participants from all four programmes were able to identify a 
range of enrichment ‘benefits’ and experiences which they perceived as ‘enriching’. 
These relate broadly to their mathematical, and personal and social, development; 
support for mathematics learning in school; and exposure to higher education. 

Beyond this level of generality, participants’ experiences were more subtly 
related to the characteristics of the programme in which they had participated, 
interpreted according to more familiar experiences of learning mathematics in school. 
So whilst ‘enrichment’ can offer valuable opportunities to extend students’ 
mathematics learning, it can only really be ‘effective’ if offered alongside rich 
‘everyday’ experiences of learning mathematics in school, because that ‘daily diet’ of 
mathematics is the basis on which students interpret and understand any additional 
‘enrichment’ experience. 
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Reasoning on transition from manipulative strategies to general procedures in 
solving counting problems 

Lourdes Figueiras and Maria C. Cañadas  
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We describe the procedures used by 11- to 12-year-old students for 
solving basic counting problems in order to analyse the transition from 
manipulative strategies involving direct counting to the use of the 
multiplication principle as a general procedure in combinatorial problems. 
In this transition, the students sometimes spontaneously use tree diagrams 
and sometimes use numerical thinking strategies. We relate the findings of 
our research to recent research on the representational formats on the 
learning of combinatorics, and reflect on the didactic implications of these 
investigations.  

Introduction 

The work on combinatorics at school is restricted in many cases to the use of formulas 
that limit the development of reasoning. English (1991) and Fischbein and Gazit 
(1988) emphasised the interest of students’ reasoning processes when solving 
combinatorial problems and their educational implications. At the time of such 
investigations, Piagetian theory affirmed its relevance to cognitive psychology, 
considering combinatorics as an essential component of reasoning. Currently, the 
interest in discrete mathematics and, particularly in combinatorics is increasing the 
research on this content (Jones, 2005). 

Much previous research related to our interests has focused on early education, 
and the detected strategies emerge from a context where students solve counting 
problems whose solution is usually a number small enough to be obtained by 
enumerating all possibilities, and counting one by one afterwards. (Empson and 
Turner, 2006; English, 1991; English, 1993; Steel and Funnell, 2001). Within this 
context, English (2007) concludes that 7- to 12-year old students “with no prior 
instruction and receiving feedback only through their interaction with the physical 
materials, the children were able to apply their informal knowledge of the problem 
domain to their initial solution attempts.” (p. 152) She suggests that activities with 
tree diagrams and systematic lists lead 11- and 12- years old children to derive the 
basic formula for combinations (p. 154).  

In this paper, we analyse the case of five selected students of this age to 
explore how they use their previous knowledge to develop strategies leading to the 
use of the general, and highlight how numerical reasoning of the students arises using 
sophisticated representations different than tree diagrams. Consequently, we call into 
question attempts to start directed instruction of tree diagrams at a too early stage. 

Reasoning strategies and scheme in counting problems 

English’s investigations (English, 1991, 1993, 2007) allowed characterising the 
strategies used by children between 4 and 12 for counting the possible arrangements 
of two and three elements. The identified strategies grant an important role to 
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manipulation and may be arranged in increasing order of complexity, from a 
resolution based on a trial and error approach to the odometer strategy.  

For more sophisticated tasks, Fischbein and Grossman (1997) refer to a 
scheme as a program that allows the problem solver to interpret a certain amount of 
information and prepare the corresponding reaction. They consider that the procedure 
performed by students leads them to compute the solution to a counting problem as a 
scheme that allows expressing the total number of possibilities. The formulae for 
calculating the number of n-permutations or (n,k)-combinations are examples of 
schemes. The work carried out on combinatorial reasoning by Fischbein and 
Grossman (op. cit.) and Kollofell et al. (in press) recognise four basic patterns 
(schemes) of counting for solving these kinds of problems:  

•Permutations of n elements.  
•Arrangements without replacement: Number of selections of k elements 

which one may obtain from n given elements, considering that no element may be 
used more than once in a selection and that the order of elements is relevant.  

•Arrangements with replacement: Number of selections of k elements which 
one may obtain from n given elements, considering that every element may be used 
more than once in a selection and that the order of elements is relevant. 

•k-Combinations of n objects 
These schemes have immediate didactic consequences, as combinatorial 

problems used to be classified also under four types, emphasising the presence of one 
of those schemes, which, once discovered, allow the student to find the solution. 
However, many combinatorial problems do not admit an approximation by these 
schemes because the criteria of repetition and order are not obvious. Moreover, many 
students fail to solve problems where those schemes must be modified or when the 
statement of the problem requires to reproduce the steps involved in the scheme 
construction. This fact led us to go back to the much more basic scheme involved in 
combinatorial formulae, namely the multiplication principle, which can be stated 
generally as follows:  

The total number of arrangements of k elements having n1 possibilities for the 
first one, n2, for the second and in general nk for the k-th, each position being 
independent of the others, is n1· n2 ... nk.   

The multiplication principle of two sets is the simplest scheme that underlies 
those of permutations and arrangements with and without replacement, and together 
with basic arithmetic operations leads to that of combinations. Thus, we focus our 
attention on the way how students acquire this basic scheme by themselves, and pay 
special attention to the use of different representations. We use the theoretical concept 
of representational format as used by Kollofel (2008). 

Representational formats in the combinatorial problem solving 

From a cognitive perspective, Holyoak and Morrison (2005) emphasise the 
relationship between problem solving and representations performance of subjects 
and conclude that the representation used to solve a particular case is a key factor in 
solving the general problem. Rico (2009) characterised the notion of representation as 
all those tools -signs or graphics- which are present mathematical concepts and 
procedures and with which the subjects dealt with and interact with the mathematical 
knowledge, i.e., record and communicate their knowledge about mathematics.  

There is agreement in mathematics education to distinguish between internal 
and external representations. Although both types of representation should be seen as 
separate domains, from the genetic viewpoint, external representations are 
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characterised by acting as a stimulus for the senses in the process of building new 
mental structures and allow the expression of concepts and ideas to individuals who 
use them. Ideas must be represented externally in order to communicate them (Hiebert 
and Carpenter 1992). We focus our attention on the external representations as those 
that have a trace or tangible support even when this support has a high level of 
abstraction (Castro and Castro 1997).  

In the specific case of combinatorics, Kolloffel et al (2008) focus their 
research on three representational formats: (a) arithmetic, (b) text and (c) diagrams. 
Diagrams are considered to help students to understand new situations.  Its 
functionality and, particularly, tree diagrams, has been analysed in several studies. For 
example, Fischbein and Gazit (1988) give the maximum benefit to the tree diagrams 
in its instructional programs. They consider that tree diagrams are representative of a 
state of maturity in the counting strategies. The effectiveness of this type of graphical 
representation has been questioned by Kolloffel (op.cit), arguing that the benefit is 
restricted only to conceptual learning, and taking into account the possibility of 
combining two or more representations. Moreover, in our investigation, we will deal 
with a new category of representational format which also integrates two or more 
representations, but under the additional condition that none of them by themselves 
make sense of the problem. We'll call this new type of representation synthetic 
representation. 

Research objectives and methodology 

Our research aim is to describe how students become able to use the multiplication 
principle in the context of a combinatorial problem. This general objective is broken 
down into two specific objectives:  

• To characterise the strategies used for solving combinatorial problems which 
solution is a number larger enough so that the students can not calculate it by 
enumerating all possibilities and then counting them one by one. 

• To characterise the process of solving a problem leading to generalize the 
multiplication principle in terms of the representation used. 

We selected five cases from a previously selected sample of 25 students. Previous 
research on children’s strategies for solving combinatorial problems (English, 2007) 
informed the first decision on the selection of this sample from a cognitive point of 
view, that was consider a group of students about 12 years. On the other hand and in 
order to minimize other contextual variables, it was decided to gather data under 
optimal conditions for the students’ involvement and interest for the activity. This 
informed a second decision on the selection of the sample. In respect of it and to make 
it clearer to the reader, we need to expose briefly about a national project seeking to 
stimulate mathematically talented students. This project's main objective is to 
identify, guide and stimulate interest of students aged 11 and 12, who are particularly 
attracted by the beauty, depth and usefulness of mathematics (Hernandez and Sanchez 
2008). Mathematic teachers are informed through teacher’s associations about the 
project and asked to propose possible candidates to joint it. There are also public calls 
in newspapers and the internet. From about 300 candidates, only 25 are selected by a 
test of mathematical problem solving and by interviews to ascertain their interest in 
participating. Selected students show a good aptitude and attitude toward 
mathematics, but they are not necessarily gifted.  

The group of 25 students participating in the project last year became our 
research sample and data were collected during the programmed sessions within the 
context of the project. They had not worked previously in combinatorics and were at 
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the beginning of the first three sessions devoted to this subject. The objectives for 
these sessions included reasoning and deducing counting methods, and the first step 
was to inquire about the multiplication principle. In this paper, we focus on analysing 
the first three questions proposed (Figure 1), as they were especially oriented towards 
obtaining information about student’s depth of knowledge on the multiplication 
principle. We asked them to elicit all their actions by writing and then analysed 
students’ reports on the solution of the problem. For the selection of cases to be 
analysed, the first step was to consider if question 1 was solved correctly or not, and if 
the correct solutions made use of the multiplication principle immediately. Cases 
would be interesting for us if the students solved the problem correctly but did not 
immediately use that rule. 

 

 
Figure 1: Proposed problem with three questions. The cards were provided to the students. 

 
Twenty students solved the problem by directly multiplying 16·16·16 and 

elicited no more actions, but five did something different. These five cases were 
considered for further research. The fact that in a more or less homogeneous group in 
terms of age, interest and capacities most of the students use immediately the 
multiplication principle, allows us to assume that those who do not do it  are still in 
the process of consolidate it. This justifies why the selected cases were considered 
especially relevant to our investigation. 

A bird’s eye on the selected cases 

Ana  

Ana uses a tree diagram to represent the statement, which permits her to organise all 
possibilities (see Figure 2). In order to create this diagram, Ana sets a first card for the 
animal's head and covers all possibilities for this. For the particular case of two cards 
in the second position, the student represents all possible options. Following the 
categories proposed by English (1993), Ana is using the most effective exhaustive 
strategy for counting.  

The tree diagram allows the student to represent the easier two dimensional 
problem (1-16-). Then Ana introduces a textual representation of this particular case, 
which permits her to identify a multiplicative pattern expressed arithmetically (1·16),  
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thus solves the two-dimensional problem, and leads to extend the tree diagram to 
analyse the dimensional situation -16-16. Again, a textual representation leads to 
represent the solution mathematically: 16 (2nd position) x 16 (3rd position) x 16 (1st 
position), following the order reflected in the tree diagram. 

Ana also comes to use a symbolic representation of three-dimensional 
patterns. After solving the problem, the solution of questions 2 and 3 is given 
immediately by multiplying the number of possibilities for each position and we could 
infer that the multiplication principle has been interiorised. 

 

 
Figure 2. Tree Diagram used by Ana. (Translation: 1. Each head can combine with 16 bodies // 2. And 
one of these bodies can be combined with 16 tails // Each one of the 16 bodies can be combined with 
16 tails // Then each of the16 heads can be combined with each one of the 16 bodies, which can be 
combined with the 16 tails. 

Biel 

Biel starts by solving the particular problem in which the number of cards for each 
item is 3. In contrast to the previous student, Biel has taken this step without a prior 
external representation. Then, he uses a comprehensive representation of all 
possibilities through the tree diagram that allows counting all options one by one, and 
leads him to detect some pattern, which is expressed as 33. 

After solving an easier problem using cards, Biel generalises his arithmetic 
representation of 3 cards to the problem with 16 cards, and writes 163 as the solution 
of the proposed problem. Then he also expresses immediately the solutions to 
questions 2 and 3 in terms of multiplication of possibilities for each position.  

Carles 

Carles identifies a multiplicative pattern in the statement and write down two 
conjectures: 16·3 and 163. Afterwards, the student proceeds to justify them. To this 
end, Carles uses a representation of the conjecture 163 in which we find elements of a 
tree diagram and a textual representation. Each form of representation does not give 
meaning to the problem independently, but taken together, they do, what reinforce our 
theoretical position about consider a new category of representational format 
integrating two representations. 

After obtaining an answer to the problem, Carles tries to refute the guess 16·3 
with a textual representation of the operation in the context of the problem:  
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The 3 are the parts they have, but have no relationship,  

thus suggesting that the multiplicative pattern that responds to a sum repeated 3 times 
does not fit the problem. As Ana and Biel did, after the solution of the first question, 
Carles immediately expresses the solution of questions 2 and 3 using the 
multiplication principle. 

David 

David addresses the problem by combining six cards belonging to two real animals. 
He solves it by counting one by one 8 animals. He then seeks to solve the problem for 
the case of three real animals by extending the previous result, and writes down the 
following false conjecture: 

With the three selected animals, 3 different pairs of cards can be made. For each 
pair 8 possibilities were obtained [before], and therefore the total number of 
possibilities will be 8 x 3 = 24. 

Furthermore, he counts one by one the 27 possibilities for this case, what leads 
him to refute the initial guess. Thereafter, David uses a synthetic representation 
(textual-arithmetic) that allows him to argue what was wrong. 

Finally, he tries again to look for a new pattern from the particular cases of 
two and three animals, and finds the correct answers 23 and 33. From that concludes 
the correct answer 163. However, in contrast to Ana, Biel and Carles, he fails to 
identify the multiplication principle to solve the second and third question 
immediately. 

Eva 

Eva’s reasoning is similar to that of David, beginning with one particular problem, 
guessing three different conjectures, and looking for their justification or refutation 
through arithmetical representations (Figure 3). She also faces the solution of 
questions 2 and 3 as new independent problems. 

Discussion of results 

A first approach to the work of these five students permits us to identify that three of 
them (Biel, David and Eva) start by a certain inductive process of reasoning, while the 
other two (Ana and Carles) use a specific representation of the problem. Based on this 
initial difference, we have identified the different steps that each of the students 
performed, and the representational formats they used in solving problems (see Table 
1). David and Eva show a very rich inductive process from a heuristic point of view. 
This is very effective for reasoning in mathematics, and allows them to effectively 
solve the first question. However, they do not respond directly to questions 2 and 3 in 
terms of the multiplication principle as the others do. Their reasoning enables them to 
generalise about the number of possibilities for each of the three placements (16) but 
not about the number of placements. As a consequence, they do not generalise the 
multiplication principle. David and Eva do not use tree diagrams.  

In contrast, the reasoning process followed by Ana, Biel and Carles does lead 
to generalise the number of placements. Focusing on the students who use the tree 
diagram, its use is more effective for Biel, who uses this diagram to represent a 
particular case. In this sense, we suspect that the failure to address the problem by 
working with individual cases increases the effectiveness of this representation for the 
generalisation of the multiplication principle. 
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Table 1. Each cell shows the representational format used at different steps of students' reasoning. 
 

 Cases 
 Ana Biel Carles David Eva 

Complete 
representation of 
the statement 

Graphic 
(diagram)  Arithmetic   

Study of 
particular cases 

Synthetic 
(Arithmetic -

textual) 

Graphic 
(diagram) 
Arithmetic 

 Synthetic (Textual- 
Arithmetic) Arithmetic 

Organisation of 
particular cases    Synthetic (Textual-

arithmetic) Arithmetic 

Pattern detection Arithmetic Arithmetic Arithmetic Synthetic (Textual-
arithmetic) Arithmetic 

Conjecture   Arithmetic Synthetic (Textual-
arithmetic) Arithmetic 

Justification of 
the conjecture   

Synthetic 
(Graphic-

textual 

Synthetic (Textual-
arithmetic) Arithmetic 

Generalisation Algebraic Arithmetic Arithmetic   

 

Conclusions 

This research responds to theoretical and teaching interests. From a theoretical point 
of view, it provides specific information concerning the use of inductive reasoning in 
solving combinatorial problems. Concerning representational formats, we confirm 
that the use of tree diagrams allows students to abandon manipulative strategies and 
move towards generalisation. Furthermore, we have analysed how such diagrams are 
used to construct the multiplication principle, in some cases extending recent research 
findings. In particular, we have seen that the diagrams have been used by students at 
different stages of cognitive processing spontaneously, using them to represent 
particular cases from which the multiplication principle is derived efficiently without 
specific instruction. 

We highlight the importance of using materials in problem combinatorial 
problems. As we observe in the analysed cases, students can use them till they feel 
comfortable with written representation. This has been observed in different stages of 
the inductive procedure, which lead students to generalise the multiplication principle 
and justify their conjectures.   

This study support that experience with two-dimensional combinatorial 
problems help students to adopt more efficient strategies for three-dimensional 
combinatorial problems, as English suggested in previous studies.  

The findings have a direct impact on instruction in the area of combinatorics. 
Although we do not question the importance of instructional programs including the 
use of tree diagrams to generate algorithms for enumeration and counting, we suggest 
that they should not be the first approach to combinatorial problems. We base this 
recommendation not only on the fact that some students are able to produce for 
themselves this type of representation, but on the fact that some students face basic 
combinatorial problems using inductive reasoning and not tree diagrams. In these 
cases, although the process to generate the scheme of the multiplication principle is 
slower, students advance significantly towards generalisation from particular cases.  
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Identifying and Developing Strategies: Beyond Achievement 
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To put into praxis the theoretical assumptions that self-regulation skills 
are teachable (Schunk and Zimmerman, 1998), this paper describes a 
research on the efficacy of an instructional approach, the Strategic 
Content Learning approach adopted to promote self-regulated learning in 
average mathematics performers of grade VIII of Indian schools. These 
students with poor metacognitive skills, who lacked productive 
approaches in implementing or adapting learning strategies, were helped 
to manage their cognitive, volitional and motivational skills. 
Concomitantly, the students were helped in identifying and developing 
strategies while solving problems in mathematics. They also developed 
their personalised strategies that they could transfer across problems and 
time, thus becoming better self regulators.               

Keywords: Self-regulation, metacognition, Strategic Content Learning  
 
Naïve self-regulators need support and assistance to engage flexibly in the sequence 
of cognitive processes that comprise self-regulated learning (Schunk and Zimmerman, 
1998). Drawing from a socio-cultural perspective social dialogue between the more 
learned peer and/or adult conducted within the context of meaningful tasks in 
students’ ‘Zone of Proximal Development (ZPD)’ (Vygotsky 1978) promotes self-
regulation. This general description of scaffold instructions though agreeable leaves 
the exact nature of adult guidance unspecified. Stone (1993) further articulates the 
nature of interactive instructions and suggests that support must be provided during 
scaffold instruction in a form of ‘prolepsis’ i.e.  instructors make comments or 
statements that students strive to interpret, given their current incomplete 
understandings (optimally in their ZPD). It is this quest to make sense of the adult 
communications that promotes the active construction of knowledge and that spurs 
students’ development of self-regulation. Butler (1995, 1998a, b) proposed an 
instructional approach, ‘Strategic Content Learning (SCL)’ to implement the 
theoretical assumptions of Stone (1993).  

In Strategic Content Learning Approach, both instructors and students are 
equally charged with interpreting each other’s comments, as a way of establishing a 
shared communicative context within which interactive discussions will be 
meaningful to students (Butler 1998a, b; Gandhi 2009). 

This paper summarises the instructional dynamics and research findings of a 
study advocating the efficacy of SCL approach in promoting self-regulated learning in 
average mathematics performers of grade VIII of Indian origin. The study helped 
these students to remediate their performance by reflecting on their inaccurate 
understanding of the mathematical tasks, unproductive metacognitive knowledge, 
negative motivational beliefs, interfering external causal attributes such as frustration 
and anxiety, and faulty self-regulated skills.  
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An Overview of Strategic Content Learning (SCL) Model  

In Strategic Content Learning approach, students are supported to engage in the cycle 
of self-regulated activities associated with successful learning. These activities 
include analysing task demands, selecting, adapting, or even inventing personalised or 
task specific strategies, implementing and monitoring strategy effectiveness, self-
evaluating performance, and revising goals or strategies adaptively (Figure 1).  

 
Figure 1: Strategic Content Learning Approach (Butler 1995, 1998a, b) 
 

SCL is based on an analysis of self-regulated or strategic performance. Key 
instructional goals are defined, including students' construction of metacognitive 
knowledge, motivational beliefs, and self-regulated approaches to learning. In making 
students self-regulated a central instructional guideline is for teachers to support 
students' reflective engagement in cycles of SRL (i.e., task analysis, strategy 
implementation, self-monitoring). For example, to support the sampled group of 
students in solving problems in mathematics, the teacher started by helping them 
analyse the common task selected (problems in mathematics). They were asked to 
interpret available information (e.g. information given in the problem). They were 
guided to identify and implement strategies for meeting task requirements (e.g. 
organising the given information, finding relationship between the given information 
and what has been asked for in the problem). Finally, the students were supported to 
self-evaluate outcomes in light of task criteria (e.g. Are they happy with the solution 
strategy, can there be any other method of doing the same problem) and to refine their 
task-specific strategies so as to redress problems or challenges encountered (e.g. is 
their chosen method an elegant one, to compare and judge the most appropriate 
solution strategy for solving the problem). 

A primary emphasis was not on teaching predefined strategies for completing 
academic tasks but to think about what the students would have done on their own if 
the teacher weren’t there.  The teacher guides students in their cognitive processing so 
that they become successful, intervening only when required. No direct explanations 
of the concepts are given. From a theoretical perspective, it could be argued that, if 
instruction focuses primarily on the direct explanation of predefined strategies, 
students may be inadvertently excluded from the problem-solving process central to 
self-regulation (Butler, 1993, 1995). If it were the teacher who has analysed a task, 
anticipated problems, and defined useful strategies, then students would have little 
opportunity to solve problems themselves and arrive at strategies. To avoid this 
problem, the teacher co-constructed strategies with students, bridging from task 
analysis. The teacher and the students worked collaboratively to find "solutions" (i.e., 
strategies) to the given problem. So, for example, when defining strategies for solving 
a problem, the students were to consider strategy alternatives in light of task demands 
(e.g., what strategies will they adopt to solve the problem, will they make a table, 
draw a diagram or do guess and check, etc.). Then, while working through the task 
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collaboratively, the students were supported to try out strategy alternatives (e.g., to 
apply different problem solving strategies to solve the same problem), judge strategy 
effectiveness (e.g., whether they found the ideal and an appropriate strategy, how do 
they know), and modify strategies adaptively. Over time, through these iterative 
processes, the students (ideally) learnt how to construct personally effective strategies 
for meeting varying problems in mathematics. 

Implications for instruction based on this integrated view are that teachers 
should (a) Collaborate with students to complete meaningful work (to generate a 
context for communication), (b) Diagnose students' strengths and challenges by 
listening carefully to students' sense making as they grapple with meaningful work, 
(c) Engage students in collaborative problem solving while working towards 
achieving task goals, (d) Provide calibrated support in given students’ areas of need to 
cue more effective cognitive processing, (e) Use language in interactive discussions 
that students might employ to make sense of experience, and (f) Ask students to 
articulate ideas (e.g., about task criteria, productive strategies) in their own words to 
promote distillation of new knowledge.  

For instance, to support average mathematics performers with their math 
problem solving, each group and the teacher worked collaboratively on the 
mathematical problems to set a context for communication (collaborating to complete 
meaningful work). The teacher began by observing students solve one or two 
problems, asking them to think aloud and discuss with their peers as they worked 
(diagnosing students' strengths and challenges). Attention focused on how they 
interpreted their task (the given problem), interpreted or understood mathematical 
concepts, represented problems, identified solution strategies and implemented 
procedures, and monitored their work collaboratively. Then, as described earlier, the 
teacher assisted the students to work recursively through cycles of task analysis, 
strategy use, and self-monitoring (collaborative problem solving while working 
towards finding a suitable strategy). When the group did well, the teacher supported 
them to recognise their success and reflect on the strategies they just used that worked 
(articulating ideas). The students documented these strategies in their personal math 
journals that they could review, test, and refine over time. When they encountered 
difficulties, the teacher assisted them to solve more effectively (calibrated support). 
For example, sometimes the teacher directed their attention to a sample problem and 
supported them to interpret that information. The students were helped to verbalise 
new insights and to try out new ideas (articulating ideas). Note that depending on the 
whole group’s areas of difficulty discussion focused on problem-specific strategies 
(e.g., how to solve an algebraic equation), strategies usefulness for solving math 
problems in general (e.g., always checking your work in-between the steps, seeing 
patterns), and/or strategies focusing on learning math more independently (e.g., 
working through simpler examples if stuck, breaking the problem in parts, plan sub 
problems while working, computing on smaller numbers instead of large numbers).  

Methodology 

The study was carried out with 5 small-groups (5-8 students in each group) of average 
mathematics achievers of class VIII from 5 different English medium schools of 
India. Both boys and girls were selected.  

An essential component of the study was students’ voluntary participation; 
therefore in the first stage of multi-purposive sampling only those students were 
selected who voluntarily felt the need of assistance in learning mathematics. 
Subsequently, average achievers in mathematics (60-65% in last two years annual 
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exams in mathematics) with average intelligence (45-55 percentiles on Cattle’s 
Culture Fair Intelligence Test: Scale II) were finally selected from 5 different schools.  

With each group the sessions were conducted for 15 days (of 1-1½ hour 
duration) wherein students worked in groups (peers and teacher) within the 
instructional dynamics of SCL. In a session 3-4 problems were taken and after 
completing the discussion on a problem the students were given private space and 
time to write their personal reflections in their respective journals. 

In the pre-post research design the indicators of self-regulation were assessed 
both qualitatively and quantitatively. Qualitative data that assessed students’ gradual 
success in becoming self-regulated by gauging their areas of problems and their 
approaches to overcome them was obtained through observations, researcher’s field 
notes and comments, transcripts of audio tapes, students’ self-reflections taken out 
from their math journals and the changes in initiation roles of students and instructor 
as the instructional sessions progressed. The quantitative inputs were attained through 
questionnaires on metacognition, self-efficacy, and perceptions of causal attributions 
that students generally state for their good or poor performance in mathematical tasks. 
The same questionnaires were administered during the pre and post-test situations.  In 
addition to above, two parallel sets (one each for pre and post test) of non-routine 
mathematical problems were made to assess students’ accomplishment in solving 
mathematical problems. This coalescence of inputs from qualitative and quantitative 
sources provided an in-depth view of each student’s progress and a record of process 
of the instructional intervention. It also allowed for an explicit tracing of the 
relationships between instructions and outcomes.  

Results and Discussions  

One of the most consistent findings across the five groups was a positive shift in 
student’s knowledge and beliefs related to the process of learning. In each group it 
was observed that students had developed a focused understanding about 
mathematical problems and problem solving strategies. For instance, a shift in 
comments of one of the students can be observed through his annotations taken from 
his math journal from three phases: initial, middle and last. There were instances of 
positive shifts in student’s metacognitive understanding revealing his better 
understanding about mathematical problems, problem solving strategies and 
management of learning.  

In the initial phase (on one of the problems): I didn’t find this problem 
interesting. My friends could do it, but somehow I did not understand anything. It 
was stupid of me to think in those terms… I felt a little awkward when the 
problem was over, because it was stressing me… I did not understand a bit what I 
am supposed to do… 

By the middle phase his reflections were more insightful: I needed help 
from my group members… It is good to write and think… I 
underlined the important words…it was also fun to draw 
diagrams…  

In the latter sessions: It was an easy problem. I could break the problem into 
sub parts. …solving smaller problems was easy… though lengthy but it leads to 
the answer. I understood the method to solve it. It was great. I liked this problem. 

A noticeable increase was also observed in improved confidence level in 
students’ work and in their learning styles. This can substantiated from the transcripts 
of the audiotapes extracted from early, middle and last phases of the interactions. 
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Students: Ma’am we are really bad in mathematics 

Teacher: What makes you think that? 

Student1: I study a lot but when I see the paper I go blank 

Student2: I don’t think I can do well in math…. I can’t remember the formula 

Student3: I do lot of careless mistakes. I just can’t get the answer. 

Teacher: What do you think would help you to improve? 

Student1: I don’t think I can ever like the subject 

Student2: We always get low marks. 

A conversation of the same group, taken from middle phase:  
Students: Ok, if we would have thought of it a little more we would have 
definitely done it.  

Teacher: How do you feel after doing this question? 

Student1: Good, … I think I can now do better in my exams. Ah! (Relaxed) 

Latter phase transcript:  
Students: I think we know how to do this. Please don’t help us. Give us time we 
will show you.  

(They worked in the group for 5-10 min) 

Students:  We have done and checked the answer too.  

Teacher: Have you verified? 

Student: I think we don’t need to… well… it’s done and …correct!. 

As the intervention progressed, students had developed personalised strategies 
that targeted their solution to the tasks. To trace changes in student’s strategic 
approaches to problems in mathematics, their strategy descriptions were chronicled 
over time and related to their specific difficulties with tasks. Analyses also depicted 
that most of the students had independently transferred strategies across contexts, time 
and problems. Transcripts of one such observation from one of the groups: 

Early Phase: We don’t know how to solve it we have never seen such problems. 
… How can we do this… any hints? (looks at the teacher) 

Middle phase: O.k. now let’s think. First, let’s break the problem and 
understand what it says…Maybe converting it into algebraic form may help. 

Last phase: (Each student was equally participating in the solution. Each one of 
them gave a suggestion and after much discussion, grappling and convincing each 
other they came to a common consensus): This could be done by drawing a table 
as I see this value is increasing as that. (After a pause).. can you see this 
relation… well let’s start… (there is lot of discussion and they stated scribbling in 
the sheets). 

Comparing the verbatim from the phased transcripts provide evidence of 
students becoming strategic performers as the intervention sessions progressed. They 
could understand problems more quickly, think of the problem solving strategies that 
were useful in solving problems and could justify and verify their strategies. Initially 
students didn’t have a faith in their working but gradually they became active 
participants who could control their thinking. They had a better understanding of their 
strategies and could judge their own working.  

Early phase interactions: 
Students: What should we do? 
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Teacher: Think…  

(Long silence, no progress) 

Teacher: It is better if you first rethink on what you have already done. (No 
response) 

Teacher: let’s try to rethink on our previous steps. Ok let’s see what is given. (No 
action taken) 

Teacher: Ok let’s do it altogether again. Let’s try to put whatever has been asked 
for 

(The students and the teacher re-look at the given problem and the teacher rereads 
the problem several times, underlining some key words that might help them) 

Teacher: So… should we begin? 

Student: Ah… (Pauses and hesitant of replying)…ah… does it mean we take the 
first value as “x”    

Middle phase interactions:  
Teacher: Why did you work backward? 

Students: because the problem is like that.  (Students work on the problem) 

Students: See it becomes easier like this… 

Last phase interactions:  
Students: This was a good problem. We enjoyed it. 

Teacher: What did you learn? 

Students: That this problem was not as difficult as we thought. We solved each 
subpart in an order. We just thought if we draw the diagram this might help… 
Ayush could see it after we drew this. Now he also agrees…  

As the sessions progressed it was observed that students had started taking lot 
of interest in their work. They had all, eventually, learned to think about the task, 
devise or plan the strategies that would be most appropriate in solving a problem. 
They often provided convincing logical arguments in support of their selecting or 
choosing the problem solving strategy. It was observed that in initial sessions students 
took lot of time to solve a problem. They usually took 10-15 min in only grappling 
with the problem with no concrete idea of initiating the work. Peer discussions were 
also limited and not all the students were involved. Students generally relied on the 
teacher to begin and provide the solution. In gradual sessions it was observed that 
students took less time to solve the problems and finally in the latter sessions it was 
observed that students could efficiently organise their strategies and hence could 
come to the solution in much less time and with fewer instructions from the teacher. 
This account of time and instructions corroborate students as becoming better 
mathematics problem solvers. The collective data advocates improvements in 
students’ increased awareness of selection, adaptation or invention of personalised or 
task specific strategies. 

Strategies that students developed included steps focusing on each of the 
cognitive processes central to self-regulation. For example, students’ strategies 
included steps related to problem analysis (e.g. “ find out what the problem is asking 
for”); strategy selection based on problem requirements (e.g. “I think we need to 
make a table”); strategy use (e.g. “most of the times it helps to break the problem”); 
self-evaluation (e.g. “reread and think about how my equation relates with given 
information of the problem”) and strategic adjustments (e.g. “if confused, take a break 
and rethink about the underlined words”). 
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As suggested earlier, strategic learning may be best evidenced when students 
responsively adapt strategic approaches based on task demand. Thus, a good measure 
of shifts in self-regulated approaches would be student’s independent development of 
strategies. In this study, students were observed to add steps to their developing 
strategies that targeted activities such as task analysis, strategy selection, self-
evaluation, and self-monitoring. Evidence for changes in student’s self-regulated 
approaches was also provided by student’s descriptions of how they transferred 
strategic approaches for use across problems. In many cases, students described 
adapting specific strategy steps from their previously attempted strategies. For 
instance, while attempting a problem they commented:  

“Oh! This is similar to the one we had done before; the only difference is… This 
should be simple to solve.” 

Another example can be drawn from the math journal of one of the students: 

“I knew what she (teacher) wants us to do, so, I translated (from English to Hindi) 
it (problem) for my friends. Heena did not understand it. When Pinky and I were 
talking about it, Heena got it … the way we do by putting arrows between the 
variables helped in making connections…. I was happy that we were right. I knew 
we should work systematically because if we do not plan we can’t get it right…”  

Consistent shifts in student’s attributions indicated that students were more 
likely to attribute successful performance to internal factors like ability, effort, 
strategy use, motivation rather than the external factors like luck, help from others or 
conditions in the environment.  

Conclusion 

Through these qualitatively detailed and cumulative analysis it was ascertained that 
the participants not only developed and mastered task-specific strategies, but also 
learned how to self regulate more effectively. The research had served to introduce 
the Strategic Content Learning as a successful instructional approach for promoting 
Self-Regulated Learning in average performers of mathematics of class eight in small 
group situation. Notable results were consistent gains in task performance and 
metacognitive awareness about mathematical tasks and strategies. Also important 
were the findings that all the students were actively involved in developing strategies 
for themselves, and that the majority of students reported adapting productive 
approaches for use across the problems. 

In short, the SCL approach seems to be a workable instructional approach 
wherein students and teachers work collaboratively in a shared communicative 
context and in the process of striving to understand each others comments become 
better performers and reflectors.   
Notes 

The names are fictional. 
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Developing early algebraic reasoning through exploration of the commutative 
principle 

Jodie Hunter 

University of Plymouth 

Student transition from arithmetical understandings to algebraic reasoning 
is recognised as an important but complex process. An essential element 
of the transition is the opportunity for students to make conjectures, 
justify, and generalise mathematical ideas concerning number properties. 
Drawing on findings from a classroom-based study, this paper outlines 
how the commutative principle provided an appropriate context for young 
students to learn to make conjectures and generalisations. Tasks, concrete 
material and specific pedagogical actions were important factors in 
students’ development of algebraic reasoning.  

Introduction 

For those students who complete their schooling with inadequate algebraic 
understandings access to further education and employment opportunities is limited. 
An ongoing concern for these students in New Zealand and internationally, has 
resulted in increased research and curricula attention of the teaching and learning of 
algebraic reasoning. To address the problem one response has been to integrate 
teaching and learning of arithmetic and algebra as a unified curriculum strand in 
policy documents (e.g., Ministry of Education 2007, National Council of Teachers of 
Mathematics 2000). Within the unification of arithmetic and algebra, students’ 
intuitive knowledge of patterns and numerical reasoning are used to provide a 
foundation for transition to early algebraic thinking (Carpenter, Franke, & Levi 2003). 
Importantly, this approach requires the provision of opportunities for students to make 
conjectures, justify, and generalise their mathematical reasoning about the properties 
of numbers.  

Carpenter and his colleagues explain that deep conceptual algebraic reasoning 
is reached when students engage in “generating [mathematical] ideas, deciding how to 
express them …justifying that they are true” (2003, 6). We know, however, from 
exploratory studies (e.g., Anthony & Walshaw 2002, Warren 2001) that currently 
many primary age students have limited classroom experiences in exploring the 
properties of numbers. These studies illustrated that more typically students 
experience arithmetic as a procedural process. This works as a cognitive obstacle for 
students when later they need to abstract the properties of numbers and operations. 
These studies also investigated student application of the commutative principle and 
illustrated that many students lack understanding of the operational laws. Both 
Anthony and Walshaw’s study of Year 4 and Year 8 students and Warren’s studies 
involving Year 3, Year 7 and Year 8 students demonstrated that many students failed 
to reach correct generalisations regarding commutativity. The students recognised the 
commutative nature of addition and multiplication; but also thought that subtraction 
and division were commutative. Anthony and Walshaw showed that although students 
offered some explanation of the commutative property none offered generalised 
statements nor were many students able to use materials to model conjectures related 
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to arithmetic properties. These researchers concluded that very few students were able 
to draw upon learning experiences which bridged number and algebra.  

Nevertheless studies (e.g., Blanton & Kaput 2003, Carpenter et al. 2003) 
which involved teaching experiments provided clear evidence that young children are 
capable of reasoning in generalised terms. These studies illustrated that they can learn 
to construct and justify generalisations about the fundamental structure and properties 
of numbers and arithmetic. Importantly, they demonstrated that when instruction is 
targeted to build on students’ numerical reasoning they can successfully construct and 
test mathematical conjectures using appropriate generalisations and justifications.   

Theoretical framework  

The theoretical framework of this study draws on the emergent perspective promoted 
by Cobb (1995). From this socio-constructivist learning perspective, Piagetian and 
Vygotskian notions of cognitive development connect the person, cultural, and social 
factors. Therefore, the learning of mathematics is considered as both an individual 
constructive process and also a social process involving the social negotiation of 
meaning. 

I draw also on the body of research that suggests that making and representing 
conjectures, generalising, and justifying are fundamental to the development of 
algebraic reasoning (Kaput 1999). For young children the development of early 
algebraic thinking needs to go beyond simply making conjectures. Children need to 
gain experience in using mathematical reasoning to make explicit justifications and 
generalisations. Constructing notations for representing generalisations is also an 
important part of the generalising process (Carpenter et al. 2005). Carpenter and Levi 
(2000) promote using number sentences to provide students with access to a 
notational system for expressing generalisations precisely. Also, number sentences 
provide a context whereby students’ implicit knowledge becomes explicit.  

Whilst students’ propensity to offer justifications can be encouraged by 
classroom norms that reinforce the expectation that justifications are required, 
providing adequate mathematical explanations requires appropriate scaffolding, 
modelling and teacher intervention (Carpenter et al. 2005). Studies (e.g., Carpenter et 
al., Lannin 2005) which have examined the forms of arguments that elementary 
students use to justify generalisations classify students’ justification as either 
empirical or generic examples. In the first instance, most students view specific 
examples, or trying a number of cases, as valid justification. These and other studies 
(e.g., Kaput 1999) have shown that using concrete material can support young 
students to develop their justification skills. Therefore the purpose of this paper is to 
report on how an examination of the commutative principle offered young students a 
valuable context in which to learn how to make conjectures and construct 
generalisations. A particular focus is placed on the role of mathematical inquiry, 
concrete materials, and teacher interventions which scaffold the students to use 
arithmetic understandings as a basis for early algebraic reasoning. The specific 
question addressed in the paper asks: How can the exploration of the commutative 
property of numbers support students to use arithmetic understandings as a basis for 
early algebraic reasoning?  

Methodology  

This research reports on episodes drawn from a larger study which involved a 3-
month classroom teaching experiment (Cobb 2000). The larger study focused on 
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building on numerical understandings to develop algebraic reasoning with young 
students. It was conducted at a New Zealand urban primary school and involved 25 
students aged 9-11 years. The students were from predominantly middle socio-
economic home environments and represented a range of ethnic backgrounds. The 
teacher was an experienced teacher who was interested in strengthening her ability to 
develop early algebraic reasoning within her classroom. Each lesson followed a 
similar approach. They began with a short whole class introduction, then the students 
worked in pairs and the lesson concluded with a lengthy whole class discussion.  

At the beginning of the study student data on their existing numerical 
understandings was used to develop a hypothetical learning trajectory. Instructional 
tasks were collaboratively designed and closely monitored on the trajectory. The 
trajectory was designed to develop and extend the students’ numerical knowledge as a 
foundation for them developing early algebraic understandings. This paper reports on 
the tasks on a section of the trajectory which built on student understanding of 
commutativity as a context which supported their algebraic reasoning. The students 
were individually pre and post interviewed using a range of tasks drawn from the 
work of other researchers (e.g., Anthony & Walshaw 2002, Warren 2001). The 
rationale for selecting these questions was to replicate and build on the previous 
findings of these researchers. Other forms of data collected included classroom 
artefacts, detailed field notes, and video recorded observations. 

The findings of the classroom case study were developed through on-going 
and retrospective collaborative teacher-researcher data analysis. In the first instance, 
data analysis was used to examine the students’ responses to the mathematical 
activity, and shape and modify the instructional sequence within the learning 
trajectory. At completion of the classroom observations the video records were wholly 
transcribed and through iterative viewing using a grounded approach, patterns, and 
themes were identified. The developing algebraic reasoning of individuals and small 
groups of students was analysed in direct relationship to their responses to the 
classroom mathematical activity. These included the use of concrete materials, the 
classroom climate of inquiry, and the pedagogical actions of the teacher.      

Results and discussion 

I begin by providing evidence of the initial understandings of the students. I then 
explain the starting point for the section of the trajectory related to the commutative 
principle. The initial starting point for classroom activity is outlined and I explain how 
this was used to press student reasoning towards richer understandings using concrete 
representations. Explanations are then offered of how the press toward deeper student 
reasoning was maintained through the introduction of symbolic notation. I conclude 
with evidence of the effect of the classroom activities using post student interview 
data.    

Interview data of the initial concepts of the commutativity principle of the students 

This section presents the initial task interview results. True and false number 
sentences (see Figure 1) were used to explore student understanding of the 
commutative principle.  
 

 
Figure 1: True and false number sentences 

15 + 6 = 6 + 15  15 – 6 = 6 – 15 
15 x 6 = 6 x 15  15 ÷ 6 = 6 ÷ 15 
 



Joubert, M. and Andrews, P. (Eds.) Proceedings of the British Congress for Mathematics Education April 2010 

108 

Twenty of the twenty five students participating in the study could not identify 
which number sentences were true or false. Many considered that they were all true 
which confirmed that they had limited understanding of the commutative property of 
addition and multiplication. Five of the twenty five students could identify which 
sentences were true. However none of these students were able to provide further 
explanation or justification for their reasoning.  

The stepping off point on the trajectory 

In order to focus student attention on the correct application of the commutative 
principle, in an initial activity the students worked in pairs to identify true and false 
number sentences. The data illustrates that the students readily recognised that 
addition number sentences were true (e.g., 15 + 3 = 3 + 15 and 5 + 6 = 6 + 5). 

Hamish: It’s just the same equation spelt backwards.  

Matthew: Three plus fifteen is just fifteen plus three twisted around so it is exactly 
the same.   

However the commutative principle of multiplication posed more challenges. 
As an example, in an initial lesson, one group of students concluded that the 
commutative law only applied to addition. During a discussion a student stated: 

Ruby: Six times five equals more than five times [six] so it wouldn’t work in that 
way.  

Another student supported her argument with an erroneous example: 
Hamish: One times zero is zero and zero times one is one.  

Although the students had begun to justify their reasoning using additional examples 
it was evident to the teacher and I that they needed to extend and deepen their 
reasoning. This was particularly so if they were to learn generalise the numerical 
relationship between addition and multiplication.  

Using representational material to press the reasoning 

Collaborative discussion led to revision to the trajectory and the insertion of other 
mathematical activities. It was evident to us that the students did not have access to 
representations on which they could base their mathematical explanations of the 
commutative law. Therefore, we placed an explicit focus on the use of a range of 
different equipment. This offered the students ways to justify their conjectures, and 
shift their arguments into more generalised terms.  

The students working in pairs, using the true and false number sentences as a 
basis for discussion, were asked to formulate conjectures about the commutative 
properties of addition and multiplication. Equipment (popsicle sticks, and counters) 
was introduced. The students were required develop explanations but also to represent 
and justify their conjectures using the concrete materials. The teacher carefully 
scaffolded the explanations so that the students integrated their verbal statements and 
justifications using concrete materials. But she also ensured that the students were 
pressed beyond the use of concrete materials, or further verbal examples to more 
generalised reasoning. For example in the following whole class discussion the 
teacher selected students to model how they represented and explained their 
conjectures for 3 + 15 = 15 + 3 using popsicle sticks.   
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Hannah: [swapped the pile of three sticks with the pile of fifteen sticks] Three 
plus fifteen equals eighteen but you could just swap the other ones like the fifteen 
with the three and the three with the fifteen so it does equal eighteen.  

The teacher then revoiced Hannah’s statement to develop a more specific explanation 
of the commutative nature of addition:  

Teacher: So you are saying that if you just swap them around it will still be 
exactly the same amount?  

She then shifted the discussion into general terms and facilitated all the students to 
consider a more generalised understanding:  

Teacher: Would that work for any set of numbers then when you are adding?  

On the trajectory we had considered the need to consider deepening the 
students’ understanding of multiplication specifically. Other forms of equipment were 
introduced to support the students to visualise the commutative property of 
multiplication. These included the use of animal arrays (pictures of animals) and 
counters used in an array. As a result the students became facile in the use of counters 
to justify the commutative nature of multiplication as evident in the explanation:  

Sabrina: [builds an array with counters] We put four down there and then we did 
five across…we thought that if you turn it around and put them down here, it is 
the same five rows of four.  

Evidence is provided in the data that mid way in the study the students were now able 
to provide appropriate mathematical explanations for the commutative property for 
addition and multiplication and justify their reasoning using concrete representations. 
 At the same time we were aware from the data collected in the initial 
interviews that the students over-generalised commutativity to include subtraction and 
division. At this mid-point in the study specific true and false number sentences were 
designed and used which extended beyond addition and multiplication to include 
subtraction and division. These were used with materials to prompt student 
exploration of the commutative principle with other operations. The teacher closely 
observed student activity and probed student reasoning:  

Teacher: Does it work with other things like division or subtraction?  

Through lengthy discussion which caused conflict for many students they began to 
provide clear explanations of the non-commutative nature of subtraction and division. 
Justifications were provided most often as a counter-example as illustrated in the 
following student’s response: 

Gareth: Seven minus four doesn't equal four minus seven… because seven minus 
four equals three and four minus seven equals minus three.  

Constructing clear understandings of the commutative properties of addition and 
multiplication formed a foundation for their explanations of why the commutative 
property did not operate for subtraction and division. 

 Shifting the press to representing conjectures symbolically 

In line with the progression on the trajectory we now analysed that the students were 
ready to use symbolic notation to further press towards generalised reasoning. The 
teacher scaffolded the use of symbolic notation during a whole class discussion after 
the students had used both materials and notation to represent their conjectures. She 
asked them to refer to the conjectures they had recorded while using the material to 
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explore the commutative property and to use an algebraic number sentence to 
represent these: 

Teacher: Can you write this as a number sentence that would be true for any 
number?  

 Analysis of the data illustrates that in response, many students readily provided a 
range of algebraic number sentences. For example, the following students said:  

Susan:  Z times Y equals Y times Z.  

Steve:  A B equals B A  

Gareth: We did rectangle plus B equals B plus rectangle. 

In accord with the trajectory, in the following lesson the teacher further 
promoted generalisation of the commutative principle through a discussion of 
symbolically represented conjectures. She recorded symbolised conjectures (see 
Figure 3) on the white-board.   

 
 
 
 
 

Figure 3: Symbolised conjectures 
 
Students were then asked to discuss the symbolised conjectures: 

Teacher: Can you look for the ones which are always true…think about why it is 
always true as well?  

In response to the teacher prompt the students illustrated their knowledge that 
addition was always commutative:   

Heath:  They always will be true... because they are just a reflection… 

Ruby: It’s just swapped… it is just the same numbers the opposite way. 

Another student used the symbolised conjecture to make a general statement 
about the commutative law:  

Sangeeta: If you use two sets of numbers which are the same the statement will 
always be true… with addition or multiplication. 

In this way, number sentences both provided notation for the students to represent 
their conjectures and facilitated them to develop more proficient generalisations about 
the commutative property.  

The combination of extended exploration, the requirement that students 
explain and justify their reasoning with materials and the press for more generalised 
reasoning using symbolic notation, supported the students to provide more proficient 
explanations of the commutative principle. This is evident in the following statement:  

Josie: If you get two numbers and you times them by each other…and then if you 
times them by each other the other way around it will always be the same answer. 

Interview data of understandings of the commutativity principle post-study 

At the concluding interview nineteen of the twenty-five students correctly applied the 
commutative principle to addition and multiplication. Appropriate justification was 
provided using concrete models. For example, one student using an array explained: 

B + ■ = ■ + B 
J + T = T + L 
Q x R = R x Q 
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Josie: Because if you swap it around it is like 12 groups of 4 or 4 groups of 12 
which is the same.   

She then extended the explanation and drew an array of six times five (see Figure 2): 
Josie: Because you can put it into groups that way or that way and it always 
works.  

 
Figure 2: Josie’s array 

Other students constructed number sentences which generalised the 
relationship using symbolic notation. 

Steve: J plus C equals C plus J … because you can always reverse stuff in adding.  

Six of the twenty five students over-generalised the commutative principle to 
include subtraction and division. These students had participated in the whole class 
activities and evidence is provided in the data that during collaborative group work 
activities they were able to recognise the non-commutative nature of subtraction and 
division. However without the scaffolding of group activity, in the interview process 
they reverted to over-generalising the commutative properties. 

In the final interview, the way in which most students represented the 
commutative principle using mathematical explanations, representations, and 
justification confirmed that the tasks, pedagogical actions, and the classroom 
environment had scaffolded student understanding of the commutative property.   

Conclusion and implications 

This study sought to explore how student exploration of the commutative principle 
deepened their understanding of arithmetic properties whilst also supporting their 
construction of conjectures, justification and generalisations. Similar to the findings of 
Anthony & Walshaw (2002) and Warren (2001), many of these students initially 
failed to reach correct generalisations regarding commutativity. Extending the task 
beyond true and false number sentences and the introduction of equipment led to 
student modelling of conjectures and provision of concrete forms of explanatory 
justification. Importantly, teacher interventions were required to shift students to 
make generalised statements about the commutative principle.  

Results of this study support Carpenter and Levi’s (2000) contention that use 
of number sentences provides students with access to a notational system for 
expressing generalisations precisely. The symbolic representation of their conjectures 
coupled with the use of equipment and teacher press for generalisation led to more 
specific student generated generalisations.  

Many of the students in this study deepened their understanding of arithmetic 
properties. However, the small proportion of students who continued to over-
generalise to include subtraction and division indicate the need for multiple 
opportunities over an extended period of time for students’ to develop deep 
understanding of operational laws.  

Findings of this study affirm that the context of the commutative principle can 
provide students with effective opportunities to make and represent conjectures, 
justify and generalise. Appropriate tasks, concrete material and teacher intervention 
supported students to develop their understanding of the commutative principle. 
Opportunities to develop explanations with concrete material and use notation to 
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represent conjectures led to students developing further generalisations. Due to the 
small size of this sample further research is required to validate the findings of this 
study.  
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The Transition to Advanced Mathematical Thinking: Socio-cultural and 
Cognitive perspectives  

Kamilah Jooganah and Julian Williams 

University of Manchester, U.K. 

This case study of the first, ‘transitional’ year of a mathematics 
programme at a research intensive university aims to deepen 
understandings of the transition to ‘advanced mathematical thinking’, or 
in effect, ‘rigour and proof’. The case draws on ethnographic data that 
includes: interviews with lecturers and students; observations of 
tutorial/teaching sessions; a video-stimulated recall interview with a 
lecturer; and documents from relevant A-level and university 
programmes. We consider insights into transition using Activity Theory 
(after Leontiev, Cole, Engeström etc.) and draw on selected cognitive 
perspectives to Advanced Mathematical Thinking  (after Fishbein, Tall, 
Harel, etc.). We conclude that the different activity systems of school and 
university involve contradictory mathematical practices and hence can 
result in cognitive conflicts, including those well documented by the 
cognitivist ‘psychology of mathematics education’ tradition. Drawing on 
these perspectives and capturing the voices of students and lecturers may 
be important to understanding identity, motivation, and student 
engagement. 

 Keywords: Advanced mathematical thinking, transition, identity 

Introduction 

This paper draws from our ongoing case study work as part of the Transmaths project, 
and from one case in particular. The aim of the project is to understand the transition 
from school/college to university study. Here we seek to explore a case of transition 
to ‘Advanced Mathematical Thinking’ from the point of view of (i) socio cultural and 
identity perspectives, and (ii) traditional cognitive perspectives. At the time of writing 
we are midway through case studies involving five universities with a focus on STEM 
‘programmes’. 
 The focus of this paper arises from one case study in a ‘research university’ 
mathematics programme, and its concern with rigour and proof especially. The 
School of Mathematics takes ‘transition’ seriously and aims to support first years in 
this. Yet we were told that the mathematical reasoning or ‘proof’ course taught 
throughout the first semester continues to be challenging for many of the students.  

Socio-cultural and Cognitive perspectives 

Harel and Sowder (2007) raise the ‘socio-cultural’ issues involved in the transition to 
Advanced Mathematical Thinking (AMT) and proof at university. However, by 
‘socio-cultural’ they refer to curriculum and instruction, e.g. with the use of 
technology. This paper seeks to generalise and deepen the ‘socio-cultural’ to include 
considerations of mathematics as practice and as activity. Furthermore, we will draw 



Joubert, M. and Andrews, P. (Eds.) Proceedings of the British Congress for Mathematics Education April 2010 

114 

on cognitive approaches to AMT, specifically the cognitive conflict students may 
experience during transition. 
 We deepen the analysis by situating mathematical cognition within Activity 
Theory, in the tradition of Vygotsky, Leontiev and as more recently developed by 
Cole and Engeström (for a full account see Williams and Wake 2007). Activity 
Theory views cognition as distributed in practice across systems of activity mediated 
by tools, social norms and social relations including the division of labour in activity. 
Tools include languages and concepts as well as technologies, texts and tasks.  These 
'carry history' and can introduce contradictions into activity (typically for instance 
when the tools in use are no longer fit for the purpose of the activity). 
 For us, then, the cognitive conflicts that students may experience in transition 
must be viewed as a result of a contradiction between the typical cognitions 
associated with pre-university and university systems and practices. In particular, we 
might expect to find students attempting to work in the university system using 
conceptual tools developed in school practices, reflecting the school system. The 
intuitive 'cognition' of the function concept in mathematics for instance must be 
understood as situated within the particular school procedural practice of graphing. By 
contrast, the function concept used in the university proof course is conceptual, and 
draws specifically in its concept definition... But we are getting ahead of ourselves.  
 There is substantial literature that have provided important insights into the 
topic of ‘rigour and proof’ and student learning (see Harel and Sowder 2007 for a 
recent summary). Essentially, these works provide an analysis of students’ cognitive 
deficits: according to Dreyfus (1999) the reason so many students have trouble with 
AMT in general, and proof in particular, is that they are simply not prepared – there is 
a cognitive ‘gap’. Others have suggested this can result in a type of cognitive conflict. 
Tall (1991) drew on Piaget’s idea of equilibrium, and noted that when students are 
confronted with new knowledge which conflicts with previous knowledge, the 
cognitive equilibrium maybe disturbed which could result in cognitive conflict. 
However little insight is provided by Tall (1991) and Dreyfus (1999), and in general 
cognitive research to AMT, concerning how cognitive conflict may relate to other 
factors located in the wider socio-cultural context of the learning-teaching 
environment. 
 Furthermore, it may be argued that many students at school are prepared to 
treat proof – and mathematics in general – procedurally and instrumentally rather then 
conceptually. This may reflect a more general ‘surface’ approach to learning in 
school: students may learn to perform instrumentally for exams rather than to think 
critically and approach concepts using a ‘deep’ approach (Marton and Booth 1997; 
Williams et al. 2010). 
 For our research we propose that the different activity systems and practices 
students are expected to engage with at university which emphasises proof and the 
need for rigour may cause a type of cognitive conflict in students (Tall 1991). This 
can be framed as a conflict between old ways of being and new demands made by 
university practices. This can manifest itself in a misalignment between student and 
lecturer perspectives in learning. 
 Furthermore, the literature on AMT tends to emphasise learning as an 
individualistic process that occurs mainly on an internal cognitive level, i.e. ‘in the 
head’. We draw on Activity Theory and relate obstacles students encounter, as well as 
frustrations lecturers experience as part of a wider systematic context. This includes 
factors related to the life-world of students such as their previous experience of 
mathematical practices, including approaches and motivation to learn. We also 
highlight other socio-cultural forces such as how certain practices and activity 
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systems can position students/lecturers in terms of their identities in relation to 
mathematics. Thus, we argue that situating the literature on AMT within the 
framework of Activity Theory can provide insights about why students may struggle 
in making the transition into AMT, the effect this can have on student identity and 
their future trajectories in mathematics. We also consider how systems of pedagogy 
can be structured to help students in this transition process. 

Methodology 

The case study was conducted at the School of Mathematics of a research-intensive 
university. We employed a mixed-method qualitative ethnographic approach: this 
allowed for a holistic way of investigating student transition to AMT and 
complimented our use of Activity Theory to the research. Collecting data from a 
variety of perspectives allowed us to capture the different dynamics operating at 
various levels in learning contexts (see Jonassen and Rohrer-Murphy 1999 on 
methodological issues relating to Activity Theory). 
 Convenience sampling was used when selecting students to interview. 
Prospective undergraduates that intended to do a mathematics degree at our case study 
institution were contacted through the post and asked if they would take part in our 
research. Students that had agreed were contacted and interviewed over the phone or 
in person. These interviews involved a semi-structured format; this allowed us to 
question students on their first year experiences and to explore with them a number of 
other themes such as their reflections of how they learned and identified with 
mathematics prior to university. A similar format was applied when interviewing 
lecturers. In total six lecturers and seven students were interviewed. Each student was 
interviewed at three data points: (1) before or during induction week when students 
first joined university; (2) after students completed their first semester; and (3) when 
students started their second year. Observations were made during lectures, tutorials 
and other environments where learning took place. We video recorded six of these 
learning-teaching sessions, and in two cases conducted video-stimulated recall 
interviews with some of the lecturers taking the tutorials.  Documents in the form of 
textbooks and worksheets were also collected. The analysis of the data collected 
followed a narrative and thematic approach.  

Results 

In the transition to university students experience a number of changes, e.g. the 
classrooms and learner-teacher relations provide a significant transitional ‘gap’ for 
many. Some lecturers are conscious of these factors, and structure support for learners 
early in the first year to get the students working together in groups. They also offer 
small tutorial sessions to support what students cover in lectures, including the course 
on proof. Interestingly, a mathematician (with a strong interest in mathematics 
education) wrote the ‘proof’ course with an awareness of much of the literature in 
mind. The text book illustrates a remarkable sensitivity to some of the transitional 
issues students encounter on a cognitive level, explicitly stating in the preface that it 
was designed to rectify this deficit or the ‘gap’ in their knowledge of advanced 
mathematics (indeed Tall’s work is cited in the text). 
 In making the transition to AMT we noted conflict in the activities and 
practices students were expected to engage with at university. From student and 
lecturer interviews we were informed that the type of mathematics they generally had 
experienced in school could be characterised as procedural, requiring little deep 
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conceptual engagement. Thus, for many of the students interviewed, university 
required a different approach: one which placed emphasis on proof and rigour 
requiring them to engage with and critically think about concept definitions.  
 This different approach to mathematics resulted in a type of cognitive conflict 
in students, which made them question their identities as learners and influenced their 
future trajectories in mathematics. This cognitive conflict we found could be related 
to a range of factors located in the learning-teaching environment, that included a 
misalignment between lecturer and student meanings attributed to mathematical 
objects; in our case the need for proof and rigour in AMT.  

Vignette 1. John’s experiences with AMT  

This vignette is constructed from two interviews with John: the first over the summer 
holiday before he started his course at university, the second after his first semester 
exams. The third is yet to come. 
 Over the summer before starting at university John told us he was eager to get 
stuck in. John comes from a working class family in a relatively deprived area: his 
school was closed and reopened; he was in the first year in the sixth form of the re-
opened school and got on really well with his mathematics teacher. He converged on 
mathematics as his degree choice largely because he was an outstanding student. He 
felt he learnt to become an independent learner through the Further Maths (FM) 
network: he experienced lectures on visiting days at his local university, and on-line 
support in between. He believed he was really ‘up for uni’.  
 By the second interview, things looked very different: the transition was a ‘bit 
of a shock’, e.g. the pace: weeks of Further Maths study were covered in one lecture 
(e.g. complex numbers). In addition, the ‘proof’ course presented a completely new 
view of mathematics that he really struggled with (in fact he was relieved to pass). 
What John experienced could described as a type of cognitive conflict: he described 
the proof course as very ‘different’, requiring a rethink about such commonplace 
concepts as ‘counting’ and ‘function’ that he thought he knew so well or ‘clicked’ in 
his mind. 

All I can say with the proof module, it was so new and such a different way of, 
just a different sort of side and view of Maths that it’s a bit of shock to the system, 
because it didn’t click straight away and it was like the first thing we did when we 
came to university, it was a sort of, ‘hold on, we understood everything at A-level, 
why are we not understanding this straight away’, and it was just a bit of, I guess 
people sort of - I probably don’t like it for that reason, because it didn’t click. 

 He was eloquent in reflecting about how A-level mathematics was reduced to 
‘just procedures’ – even proof by induction was procedural at A-level. Looking back, 
he now sees some things he did wrong: he initially did not work hard enough but he 
now feels he has the work-social balance right. Where next? He’s not certain - he has 
survived the shock to the system, but his view of himself as a mathematician is 
shaken. For John his experiences with proof lessened his confidence with 
mathematics: indeed he reports that he will consider taking non-proof modules in his 
second year. This partial story raises the question: how important are his various 
experiences in the trajectory of his identity? Will he veer towards or away from the 
kind of mathematical identity on offer, and what practices make the difference?  
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Vignette 2. Misalignment between students’ and the lecturer’s mathematical 
activities and practices: the case of function and its different meanings 

Small group tutorial sessions are provided twice a week to support students in what 
they cover in lectures. These sessions involve lecturers going through the problem 
sheets and working with students on the solution, ideally in the form of tutor-student 
discussions. For this second vignette we look closely at one ‘enlightened’ lecturer’s 
engagement with students’ difficulties with the ‘function’ concept, during a tutorial. 
We noted that the concept definition is included A-level texts, but close examination 
of a typical text revealed that the school mathematical practice was essentially 
procedural: as we will see, the procedural experience at school set the students’ 
dispositions in conflict with the lecturer’s conceptual approach. For this lecturer, as he 
informed us, ‘proof and the need for rigor are what define maths’. 
 The tutorial was spent discussing one question from the problem sheet: To 
find the inverse function of f: R to R, f (x) = 2x+3. Several of the class had answered 
this in a way that Robert, the lecturer, said “Was not wrong, but likely to cause 
problems due to its imprecision”. What the students had apparently done in the work 
they handed in was to rearrange the formula/relation y = 2x+3 to get x = ½ (y – 3), 
then rewritten this exchanging the x and the y to get something like y = f (x) = ½ (x-
3). 
 This is a correct but arguably incomplete answer, as the domain and co-
domain are left implicit (in fact both are R for the inverse function too, as in fact f is in 
this case a bijection from R to R, and it is hardly surprising that the students might 
therefore leave this implicit even if they thought it was important). But right or wrong, 
why is this method such a powerful attractor for the students? In practice, in school 
activity systems – a function is always described as a ‘rule’ mapping from x-values to 
y-values, represented as real number lines horizontally and vertically, most often as a 
graph. In this sense it can be described as a powerful concept image, or better 
prototype (Fishbein 1990).  However, a social practice perspective would assert 
merely that this is how the students are ‘schooled’: this is typically what they practice 
for school exams. 
 Robert seems to have selected this example to discuss because he had marked 
their work beforehand and saw an opportunity to emphasise the need for complete, 
explicit writing out of the mathematical proof here (with explicit definition of the sets 
X and Y). He therefore came to the supervision knowing the students work and what 
he wanted to achieve in ‘deconstructing and reconstructing’ their informal 
mathematics using his preferred degree of rigour and precision. Robert proceeded to 
write down how he would prove f is a bijection, starting with the definition of an 
inverse in which the domain and co-domain are explicitly included, thus: 

Definition: the inverse function of f: X to Y [that is, a function that maps any x in 
X to a single value y in Y given by a rule y= f (x)] is a function g that maps a 
value y in Y to a value x in X, (i.e. g(y) = x) such that g f (x) = x for all x in X. 

 He began to work through the algebra but was interrupted by a student who 
said he had the answer right his own way (as mentioned above). Robert stated “It is 
not wrong but why exchange the values x and y?” which he claimed was likely to lead 
to confusion of the domain and co-domain. Robert encouraged the same student to 
illustrate the reasoning behind his answer on the board. Indeed, most of the class 
seemed to agree “That is the way we were taught at A-level”. 
 The student then fortuitously chose to exemplify his approach using 
exponential functions (from a later worksheet question): he argued that the expression 
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y = exp(x) was the same as x = log(y), and that switching x and y was required to 
‘get’ the inverse function y = log(x). Implicitly we assume the graph of y = exp(x) is 
the same as that of x = log(y), and so does not represent the inverse. However, Robert 
noted “Oh yes it might be, if you consider the graph as a representation of the 
function mapping y to x”. The idea that the same graph ‘represented’ two inverse 
functions however seemed counter-intuitive – but drawing on Activity Theory, with a 
focus on practice, we say rather it is counter to all school practices of mathematics the 
students had experienced hitherto. 
 Why is this serendipitous example pedagogically ‘useful’? Because unlike the 
worksheet example the domain and co-domain of the inverse function log(x) is 
problematic: since the exponential function has no negative values, log(x) has no 
values for negative x (within the Reals anyway). Robert was therefore able to point 
out how important the specification of the domain and co-domain are to this work. An 
intuitive approach would have simply led one to say log and exp are inverse functions 
without specifying the functions rigorously (i.e. completely and precisely). 

Analysis of two mathematical activity systems and practices at work 

This case study highlighted a conflict between school activity systems and practices, 
and the ‘rigour/precision’ required in the university mathematics activity system and 
practice: it rests in one sense in the contrast between informal procedures in school 
and rigorous conceptual work of pure mathematics at university. 
 From the second vignette we can note that the students believe exp(x) and 
log(x) ARE inverse functions, whereas Robert pointed out that these expressions are 
NOT functions, but values. Students would have been introduced to the idea that the 
graphs of f and its inverse g would be reflections/images of each other in the line y=x. 
The suggestion that the one graph can be thought to represent two functions (y as a 
function of x and its inverse x as a function of y) would be counter to school practice 
– and what cognitivism might say is counter-intuitive. In Activity Theory terms, these 
‘cognitive intuitions’ are embedded in unexamined ‘operational conditions’ that fall 
below the level of consciousness, and are all the more powerful for being unexamined 
and uncritically accepted. We can view school mathematics as a practice developed 
within the AS/A2 of the school/classroom/curriculum; what we are seeing is a conflict 
between the old ways of being and the new demands caused by Robert’s subjective 
view of mathematical objects (drawing on university/academic practices). Objects, 
like ‘functions’, have contested meanings here because they are boundary objects 
used in two quite different practices and systems – that of the school and the 
university. This contradiction might suggest that the school activity system, or maybe 
the university activity system, should be modified or re-designed to help better align 
these practices: to shed light on the conflicts for the benefit of both learner and 
teacher. In a sense the dialogue between Robert and his students can be thought of as 
just such a re-design. 

Analysis of the pedagogy/curriculum 

The fact that the tutorial was based on the students’ work (previously marked) and 
that Robert brought this prominently into the session may have triggered what 
happened: making the intuitive and implicit approaches taken by the students more 
explicit. We have rarely seen this Assessment-for-Learning style pedagogy in our 
other university case studies (usually the lecturer uses the postgraduate assistants to 
mark the work, and thus misses a great opportunity to learn about their students’ 
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mathematical practices/errors). This is difficult to envisage in a lecture with large 
student numbers, and the ensuing pre-conceived ‘coverage’ and norms of interaction. 
 Even though Robert was aware of the vagueness and unhelpfulness of the 
informal school approach to learning AMT, he was unaware of the depth of the clash 
of values and practices involved in this one example. He might have said that he 
wanted them to “write their solutions out properly” with attention to precise 
definitions, etc, but had not explicitly realised that his students’ practices with regard 
to function did not take account of its concept definition. Thus the most important 
element of learning derived from the interaction between Robert and his students 
might be his enhanced understanding of the implicit beliefs they brought to their 
learning. By confronting their mathematical practices he was able to impart both a 
deepened understanding of AMT and cause them to reflect on the cognitive conflicts 
which may occur when old knowledge conflicts with new ways of understanding 
mathematics (Tall 1991). This kind of learning is one that Robert endorses: he is a 
keen and enthusiastic teacher as well as a research academic. After our video-
stimulated recall interview he says that he has learnt some things about the way 
students think and have been influenced by schooling, and sees its potential use for 
him as a lecturer. 

Concluding Remarks 

The cognitive perspective helps us understand the transition to Advanced 
Mathematical Thinking as a form of correction of a cognitive deficit. Furthermore, we 
argue that viewing the ‘conceptual’ transition to AMT as part of a shift from the 
practices and activities of one system to another raises a broader range of issues: these 
practices are shaped by more than only the ‘thinking’ that goes on in the head, but 
also by the learning approach, a set of priorities, expectations and dispositions, a set 
of tools, social relations and norms of behaviour too. These are all important aspects 
to consider. Thus, it could be argued that the predominant practice with graphs and 
functions in school mathematical practices (mainly focusing on graphing) leaves the 
specification of domain and co-domain irrelevant, even though A-level text books 
define them as essential to the concept. More broadly, proving is perceived by 
students as practising a set of instrumental procedures: it has never been practised as a 
social process required to persuade a critical audience beyond reasonable doubt. We 
have particularly seen how the teaching and learning practices may be an essential 
part of the transition problem/solution. 
 Finally we have alluded to the issue of identity. For the learner (especially 
noted with John above) transition may be a threat to an existing or emerging 
mathematical identity, or conversely it may be an opportunity to re-invent himself as a 
different kind of mathematician. The resolution of this will, in our view, be critical for 
the way John engages in his future studies (we currently await the third interview with 
interest). However, identity is a crucial issue for Robert also: ‘rigour and proving’ is 
for him what constitutes the essence (the pure episteme) of mathematics. Yet he also 
identified himself as a teacher: he wants to take the students with him across the gap 
(the threshold), while at the same time acknowledges that for many students this will 
not happen. 
 We can see the contradictions between school and AMT practices, or between 
schooling and university activity systems being lived out in the mutual engagement of 
these identities in the tutorial: it is manifested as a tension between the subjective 
‘ways of being’ a mathematics student and a lecturer. These tensions can be 
constructive as they bring to the fore different discourses and what it means to be a 
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mathematician and a learner of mathematics. This could be incorporated into the 
design and pedagogy of the curriculum: but there are so many obstacles to this, not 
least the macro- and meso-economic and political structures in the systems of schools 
and universities, but also in the historically constituted professional identities of 
‘homo academicus’. 
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This paper reports on a research project on the teaching of risk with 
teachers of mathematics and science in Key Stage 4. Software models of 
socio-scientific issues have been developed and tested to support teachers 
towards developing a pedagogy of risk in their teaching. Transcripts from 
a workshop with teachers are used to illustrate some key findings.  

Background and Research Aims 
This paper reports on the findings of a research project1 whose aim has been to 
support and enhance the teaching of risk at Key Stage 4. An innovative and cross-
curricular approach has been used, based on modelling socio-scientific issues using 
new technological tools, designed specifically to enable the consideration of ethical 
and social issues, whilst building personal value systems alongside quantifiable 
mathematical models. By interacting more deeply with interdisciplinary knowledge, 
the aim is that mathematics and science teachers can be empowered to develop 
meaningful activities around the concept of risk. A key component of the research has 
been that pairs of teachers (one mathematics, one science) from the same school work 
together to explore the possibilities of cross-curricular working in their school, and 
also become involved with the design of materials in the project. 

The discourse of risk permeates public policy and, increasingly, the choices 
people face in everyday life - consider how current medical practice favours informed 
choices to be made by the patient where previously decisions were taken by the 
medical expert on behalf of the patient. In response to these societal changes, risk is 
now recognised as a school topic through its recent incorporation into the 
mathematics curriculum alongside probability, and it has been part of the science 
curriculum for some time, particularly through the “How Science Works” Programme 
of Study. However, we note that science teachers continue to be reluctant to teach 
risk, not only because of concerns about their own knowledge limitations, but also 
because they are unsure about appropriate pedagogy for engaging students in the 
topic. Risk as a science topic is intimately connected with “socio-scientific issues” 
(such as stem cell-based medicine and climate change) and requires discussion and 
evaluation of argument, a challenge since evidence shows that science teachers are 
not always confident in using teaching methods based around discussion (Bryce & 
Gray 2004). This difficulty is even more a problem for mathematics teachers where 
“social issues” are unfamiliar ground. 

If the current generation of school students are to be sufficiently confident in 
grasping the idea of risk in varied contexts, a number of obstacles need to be 
overcome. Mathematics teachers do not feel confident in teaching topics on risk and 
                                                
1 Promoting Teachers’ Understanding of Risk in Socio-Scientific Issues, funded by the 
Wellcome Trust (grant number WT084895MA), September 2008 – May 2010. See website 
www.RISKatIOE.org . 
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need to be able to have the resources and the experience to teach it well; this is also 
partially true of science teachers though they have more experience of social issues 
impinging into science lessons. Hence this project is helping teachers with resources 
and a pedagogy to reflect the new curricula they are teaching, which responds to their 
present level of knowledge and which is viable to use in the classroom.  

The understanding of risk incorporates concepts which go beyond substantive 
science or probability into affective and social science domains. To address this 
problem, we have designed (in collaboration with teachers) computer-based 
modelling tools in which teachers can explore and interrogate their knowledge of risk. 
The tools are set within decision-making scenarios to help teachers increase their own 
confidence in teaching about risk, and be able to enthuse their students, particularly 
with regards to probability.  

The idea of microworlds began with Seymour Papert and Logo, as described 
by Noss and Hoyles (1996). They linked direct manipulation of computational objects 
with the description of their arrangement in sequences as Logo programs. Their 
intention was to help students build links between seeing, doing and expressing 
through the common representational infrastructure of Logo, to investigate how 
mathematical meanings were structured by the tools available for expressing the 
relationships under study and to trace how far this mediational process assists in the 
construction of the mathematical meanings intended by their teachers or curriculum 
designers. The approach is based on a constructivist philosophy. 

The Idea of Risk 

The judgement of risk is important in the public understanding of science in modern 
society (Rees 2006). Many socio-scientific and financial issues in the media can only 
be rationalised through an appreciation of risk. The confusion about the nature of risk 
evident in the media is reinforced by its ambiguous use in text books and academic 
articles. Often, risk is expressed as likelihood, equivalent to probability. We might 
then ask if the risk of an aeroplane crashing is 1 in 10 000 and the risk of catching 
measles is also 1 in 10 000, do we wish to equate the two risks? There is the 
underlying question of how such probabilities are estimated. However, the impact of 
these two events is very different. We adopt the view that risk is best considered to be 
a combination of both the impact of the hazard (also called the utility or dis-utility) 
and its likelihood of occurrence. This is the standard concept of risk as used in 
statistical decision theory (Edwards & Tversky 1967); however we do not go along 
with the standard view that risk is always a simple arithmetic product of the likelihood 
and utility values.  

Although our approach emphasises how subjective values can be marshalled 
through an objective framework, risk does not have an established and agreed 
epistemology. Wilensky (1997), in relation to probability, has discussed how such 
uncertainty about the foundations of a concept can lead to “epistemological anxiety”. 

Factors other than epistemological anxiety also affect how risk is perceived 
(Kahneman & Tversky 1979, Campbell 2006). Dying from an aeroplane crash is a 
concentrated risk in so far as many people simultaneously would suffer the 
consequences should the accident occur. In comparison, dying from a road accident is 
a diffuse risk. Fear of flying is not uncommon and can be seen as an example of how 
concentrated risk is often regarded as worse than diffuse risk, even when, as in this 
case, the diffuse risk is in fact much greater in terms of actual deaths. Risks that are 
voluntary or associated with benefit from the observer’s point of view may often 
appear lower, so that risks from alcohol or smoking may be perceived lower than they 
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really are. The problem in understanding risk is accentuated by a corresponding 
difficulty in appreciating its mathematical core of probability. The literature contains 
many studies that demonstrate that, without a secure understanding of (probabilistic) 
situations, people’s reactions are often guided by misleading intuitions, which are 
rooted in inadequate cognitive biases (Kahneman et al. 1982, Kapadia & Borovcnik 
1991, Lecoutre 1992). 

Nevertheless, research shows that participation is best enhanced by engaging 
students with topics about which they are deeply concerned (Ainley & Pratt 2006). 
Children and adults routinely encounter science in the media: climate change and 
global warming, smoking and cancer, alcohol consumption and heart disease, 
nutrition and obesity to name just a few. It is exactly these issues that students, find 
engaging, so they are an important starting point for increasing involvement (Haste 
2004). 

 Teachers can be assisted to find ways of helping students to recognise the 
unpredictability of chance at the individual level as well as its apparently 
contradictory predictability at the aggregated level and to assess the reliability of the 
source of data on which a judgement is based (Kolstø 2001). They can also be enabled 
to explain the relationship between deterministic and stochastic thinking (Prodromou 
& Pratt 2006). There is now an expectation that teachers should respond to this 
challenge. For example, the 21st Century Science curriculum scheme1 (used by about 
one-third of school students in England) requires that students “can explain why a 
correlation between a factor and an outcome does not necessarily mean that one 
causes the other”, and “can suggest reasons for given examples of differences 
between actual and perceived risks” (OCR 2009, Appendix F.5). 

There are few materials which have addressed these issues for mathematics 
teachers. Early work by a Schools Council Project on Statistical Education (1980) 
developed materials, relating to smoking and other areas where risk can be explored. 
More recently, the Bowland Maths Project2 produced several modules for Key Stage 
3 called ‘How risky is life’ and ‘Reducing road accidents’. These modules are 
exploratory and open-ended, but not explicitly cross-curricular. They certainly 
advance the debate about how to make mathematics engaging but from our 
perspective they present a limited view of risk: there is a focus on probabilities of 
hazards to the exclusion of considerations of impact. The modules are clearly 
developed with the mathematics classroom in mind, and do not explicitly draw 
students into consideration of ethical and moral values in decision-making. 

Our perception of practice in the science classroom (based on literature and 
discussion with teachers) is that the topic of risk is usually handled with a focus on the 
“social” dimension of contemporary socio-scientific issues, such as how the popular 
media mis-represents scientific knowledge and practice for its own ends (for example, 
the risks involved in children having or not having combined MMR vaccination). 
What is largely absent is a quantified approach involving numerical probabilistic 
information or mathematical modelling of risk. We believe that it is essential for 
teachers and learners to be able to build and explore their own personal models in 
decision-making situations, which combine quantitative, semi-quantitative and 
unquantified factors. Hence in our research we have developed scenarios, one of 
which is described below, which have a strong focus on trying to put numerical data 
into models, using both probability and impact as dimensions of risk. This also offers 
the opportunity for mathematics teachers to make probability (which can sometimes 
                                                
1 www.21stcenturyscience.org 
2 www.bowlandmaths.org.uk 
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be seen as a quite dull topic with artificial situations) more interesting by linking to 
real world situations and contexts.  

Deborah's Dilemma: Some evidence about teachers' thinking in a risk scenario 

A software environment has been developed called Deborah’s Dilemma. Teachers are 
invited to advise a fictitious person, Deborah, on whether to have an operation that 
could cure a spinal condition that is causing her considerable pain. The operation 
would entail certain hazards with risks that need to be inferred from various sources 
of information. Choosing not to have the operation would entail a lifestyle choice to 
manage the ongoing pain resulting from the spinal condition. Two software tools 
accompany the information about the condition. The first (“Operation Outcomes”) is a 
probability simulator in which users model the possible consequences of having the 
operation. The likelihoods for various complications (i.e. side effects of the surgery, 
ranging from minor to serious, such as super bug infection, or death through general 
anaesthetic) are quoted in differing forms. Ambiguities in the data are deliberately set 
up in order to provoke discussion and debate; for example a “spine expert in London” 
and “a surgeon in a regional hospital”, give conflicting opinions – who should one 
trust?  

The second tool, the “Painometer”, is a less conventional attempt to give a 
quantified experience of Deborah's pain and how different activities may cause it to 
increase and decrease, relative to a “tolerable” level. Pain is an experience that defies 
objective measurement; hence the personal perception of pain is a potentially 
interesting context for probing people's personal models of risk. Users are required to 
decide what everyday and leisure activities Deborah should or should not do, and in 
what amounts, and to infer from the information the effect on Deborah’s pain level of 
those activities (as expressed through the dynamically-varying height of a vertical bar 
as a “painometer”). The intention is for the tools to promote quantification of risk in a 
real context, whilst allowing for personal interpretation, and not constrained by formal 
models of risk such as exist in statistical decision theory, and which are 
conventionally used in risk assessment. 

We now present some data from workshops that we have run with a small 
number of teachers exploring Deborah's Dilemma. Data were collected in the form of 
audio recordings of group discussions, and screen capture with audio of teachers 
working with the software in pairs; also researchers observed and questioned the 
teachers as they worked. We have assessed the teachers’ attempts to compare and 
weigh up information about the pain against the risks of the operation, using ideas of 
impact such as minor or major complications, and what these data suggest about the 
teachers' thinking. Below, some results with one pair of teachers are presented: A is 
the mathematics teacher and L the science teacher. The transcript is given before the 
discussion.  

Episode 1 

• [The surgical operation] 
• L: It must be pretty bad pain to consider… 
• A: If you’re going to consider the surgery it’s got to be 
• A: ‘Unwanted after effects’ (laughs). So 95 to 98% successful. So 

that’s…is that 95 to 98% of the time the pain is relieved? Or 95 to 98% of the 
time there’s no complications? 

• L: That’s a good question 
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• ... 
• L: Complication three…oh ok so you don’t need to…more risky than 

what’s going on. ‘This was helpful…I asked my doctor for a second 
consultation…’ Yeah, major surgery; general anaesthetic is another risk, and 
the superbug 

• A: ‘Currently about 0.00025%’ 25 in 100,000 
• L: See that’s what we were thinking; ‘…developing my lifestyle to 

support long term management of the pain’. ‘…Yes, I can live with the pain 
and I have adjusted my lifestyle successfully’. It’s more of a lifestyle 
operation; it’s not something that’s going to save her life is it? 

• A: Well she’ll still be alive but it’s got implications right through doesn’t 
it. I suppose if it does deteriorate you set yourself up for… 

• L: Well if anything did deteriorate you’d be in a different position but if 
you lived slightly different then… Do you want to look at the other two 
options? 

• A: One in 1000 for general anaesthetic 
• L: That’s one in 10,000 
• A: One in 4000 for the superbug 

 
An unusual event happens in lines 8-14. A probability of 0.00025% is mis-

translated to be 25 in 100,000, or 1 in 4000. This is taken to be the probability of 
contracting a super-bug. In fact this is far too high for the current prevalence of super-
bug infections in UK hospitals. It is even the sort of mistake for which a teacher may 
admonish a pupil: getting an answer which cannot really be correct. It would mean 
that the super bug is contracted weekly in hospitals. This illustrates a problem which 
is known to arise: that people find large numbers and low probabilities very hard to 
comprehend and deal with. It is likely that, with more time and thought, these teachers 
would have realised their error. However, it is salutary to remember such issues in the 
design of materials about risk.     

Episode 2 

The second episode conveys a positive outcome from the exploration of Deborah’s 
dilemma by teachers from different disciplines. A teaches mathematics and is positive 
about recommending the operation, while L teaches science and has some doubts.  
 

• A: I'd have the operation, give it a go. That's my lifestyle.  
• L: If someone said you couldn't play football that would be important? You 

wouldn't be prepared. 
• A: Not only that, it's self-sufficiency as well. You need someone to do your 

shopping for you, already at 38. 
• L: Well she can use a trolley. 
• A: No, she can't lift a shopping bag – doing shopping would make you worse. 

Everything you chose to do for yourself would make you worse, leading to a 
more serious condition. 

• L: If you're recommending it purely on the odds, right... 
• A: No, not purely, I'm recommending it possibly against the odds, you know 

3... over here [looking at written notes??] complications or failure is 5%. 
• L: If you were saying it for yourself, you would be prepared, but say you were 

making it for her – then you'd be saying, well actually. 
• A: Right, we have to come down on one side or the other, we can't just re-
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present the evidence, we've got to say 'we recommend you do this', we can't sit 
on the fence. 

• L: Do you think if you were the doctor, if you were someone close to 
Deborah... 

• A: You might have a different opinion. 
• L: ...it's going to come down to the relationship with the patient as well. What 

are we, we're just people looking at statistics, if the computer says no, because 
at the moment to me the computer is saying no. 

• A: 3 in 1000 serious complications. 
• L: That's serious, you are 38 your life could- 
• A: Yeh! 
• L: Because the computer... [laughs] Who are we?? 
• A: That's the question isn't it? 
• L: All these things, is lack of sleep, nausea, even depression 
• A: That can ruin your life. 
• L: [reads] I will experience high level of ... I've had enough, I've had several 

years of it It's kind of difficult to see Deborah on paper... 
• A: Do you think she should shut up and stop moaning? 

 
A key overall observation about A and L's exploration is that there was a 

regular switching of position which depended on the information immediately in front 
of them (the ‘availability heuristic), and their shifting estimations of impact. Initial 
exploration of the “outcomes” tool suggested a likelihood of serious complication 
arising from the surgery as the order of several cases in a 1000, and they initially 
talked about this as a “reasonable risk”. However as they explored with the 
Painometer tool they began to favour a non-surgical approach and to re-assess the 
reasonableness of the surgical risks. Our interpretation is that they were left in an 
ambiguous position between the two “sets of evidence” and in the end rationalised 
their position by appealing to the authority of the “specialist in London”: L 
comments: 

I think the fact she's gone to the person who knows more about it, 
spends his life looking at risk, he says no there are better things out 
there for you, other options … As a scientist I would go with the 
specialist spine doctor who knows more about it, I would go with 
what he says.  

There is an interesting – if speculative – positioning here, worthy of more 
systematic exploration, where L talks “as a scientist” explicitly about authority of a 
person, whereas at other moments with A leading they look to the evidence coming 
from “the numbers”. 

It would seem that A (the mathematics teacher) brings in the probabilities to 
make the choice; this is mediated by L (the science teacher) in bringing in social 
issues, placing stress on impact (minor and major complications); A changes his 
mind, as illustrated in the final recommendation that the pair produce, presented 
(interestingly) as a personal letter, reproduced below. It should be noted that this 
happened with one pair of teachers and illustrates the importance of collaboration and 
discussion between teachers from (different) disciplines. The approach taken by the 
project has enabled effective cross-curricular working in an aspect of pedagogy which 
is often absent from classrooms, the discussion of issues beyond the quantitative or 
scientific evidence.    
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Dear Deborah, our recommendation is that you do not have the 
operation and further investigate pain relief and other options for 
support and managing your lifestyle. We have looked at the 
probabilities of failure and complications during surgery and whilst 
the likelihood of severe complications is around 0.4% - possibly 
quite low – we are unsure as to the exact chance of success as the 
study quoted by your first doctor referred to arm pain only and we 
are inclined to take the opinion of the spine specialist that managing 
your condition is the best course of action. We feel the probabilities 
are too high against you if the surgery is not entirely necessary. This 
is obviously balanced against how your condition is affecting your 
daily life and how often the pain is above your tolerance level. If the 
condition worsens then surgery is not a prohibitively dangerous 
option in that case. 

Conclusions 

The research is continuing with a wider evaluation of our decision-making scenarios 
with mathematics and science teachers, and advisers and educational researchers. 
However, a number of interesting ideas have already emerged.  

Deborah's Dilemma encourages teachers to introduce quantitative and 
numerical elements via a decision problem. It also encourages them to recognise and 
introduce personal and social elements into decision-making through ideas of impact 
and utility of different choices. The data suggests that the cross-curricular dialogue 
approach does produce a rich exploration for both, and leads to views about risk being 
shared. This is certainly important for mathematics learning as social issues rarely 
feature in mathematics classrooms and yet are obviously important in studying 
uncertainty.  

The risk context also offers a fresh perspective on research into perceptions of 
uncertainly. For example, it has been known for some time that people find it hard to 
manipulate and use very low (or very high) probabilities (Kapadia & Borovcnik 
1991). This research has found some evidence of this problem (cf. episode 1) 
(confirming the need for more study), which may need to be taken into account in the 
pedagogy of teaching risk, particularly as the spectrum of risks commonly discussed 
range over many orders of magnitude. 
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Perceived parental influence on students’ mathematical achievement, inclination 
to mathematics and dispositions to study further mathematics  

Irene Kleanthous and Julian Williams 

University of Manchester 

This paper explores perceived parental influence on students’ achievement 
in mathematics, inclination to mathematics and dispositions to study 
further mathematics among 563 students in Cyprus. The reliability of the 
scale designed to measure perceived parental influence was investigated 
using the Rasch model. It was found that perceived parental influence had 
a statistically significant effect on students’ inclination to mathematics, 
but it did not have a statistically significant effect on students’ 
mathematics achievement and dispositions to study further mathematics in 
Higher Education. The effect of parental influence on students’ 
dispositions towards mathematics is discussed.  

parental influence, parental aspirations, mathematics achievement, 
dispositions  

Introduction 

A considerable number of studies have investigated the role that parents play in their 
children’s mathematical learning. Previous research results suggest that parental 
involvement has a significant impact on students’ mathematics achievement and 
attitudes towards mathematics (Fan and Chen 2001; Aunola et al. 2003). Parental 
aspirations and parents’ attitudes towards mathematics have been identified as having 
a significant impact on students’ participation in advanced level mathematics and 
students’ achievement in mathematics (Ma 2001).  

Despite the vast research on parental involvement in primary mathematics 
(Campbell and Mandel 1990) there is a scarcity of research on parental aspirations 
and their impact on adolescent students’ dispositions towards mathematics. Notably, 
although parental influence has been investigated to some extent in relation to 
mathematics education, there is still some inconsistency in the terminology used in 
the literature to define parental aspirations. Jacobs and Harvey (2005) define parental 
aspirations as the amount of education that parents would like for their children to 
have, ranging from secondary education to postgraduate university degree.  

It is generally well documented that higher family socioeconomic status (SES) 
is related to higher educational expectations for their youths (Wentzel 1998). The 
concepts of habitus and capital, suggested by Bourdieu and Passeron (1990) have 
become prominent for investigating and understanding social inequalities among 
parent groups and crucial for understanding parents’ choices and involvement in 
educational contexts. We conceptualise students’ dispositions to study further 
mathematics in the field of Higher Education as part of their habitus. Students’ 
dispositions towards mathematics might partly be a result of the habitus their families 
have inculcated.  

"Pedagogic work accomplished by the family is a function of the distance 
between the habitus it tends to inculcate, and the habitus inculcated by all 
previous forms of pedagogic work" (Bourdieu and Passeron 1990: p.72). 
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Undoubtedly, cultural beliefs have an influence on the value parents place on 
their children’s education. Mau (1997) remarks that the degree of parental expectation 
which is perceived by students differs between cultural/ethnic groups and has a direct 
impact on children’s academic performance. Cross-cultural research on perceived 
parental influence has attracted the interest of many researchers. Specifically Cao, 
Bishop and Forgasz (2006) compared Chinese and Australian students’ perceptions of 
parental influence, and concluded that Chinese students have stronger perceived 
parental influence than Australian students.  

In a comparative study of Asian and Caucasian Americans parents, Campbell 
and Mandel (1990) divided parental influence into four elements: parental pressure, 
psychological support, parental help and parental monitoring. Furthermore Cao, 
Bishop and Forgasz (2006) distinguish between direct and indirect parental influence. 
They argue that direct parental influence, such as helping children with mathematics 
difficulties, has a less important impact on students’ mathematics performance.  
Indirect parental influence such as parental encouragement, parental expectation and 
parents’ attitudes towards mathematics have been identified as having a significant 
impact on students’ attitudes towards mathematics.  

Due to the complexity of parental influence, there is not a standardised scale in 
the literature for measuring perceived parental aspirations. The aim of the present 
study is to develop and validate a scale for measuring perceived parental aspirations 
and to investigate their impact on students’ dispositions towards mathematics. A 
working definition of parental aspirations which underpins the development of the 
items for this scale, is the extent to which parents value education and urge their 
children to do well in school and the strength of the parents’ expression of the 
importance of their children's social advancement through education (in this case as 
perceived by their child). We hypothesise the impact of parental aspirations on 
students’ formation of habitus and decision making to study further mathematics in 
Higher Education (HE) is crucial. 

Methodology   

A questionnaire was designed to measure students’ perceived parental aspirations 
(PAR), prior maths achievement (MACH), inclination to mathematics (MINC), maths 
self-efficacy (MSE) and dispositions to study further mathematics (DISP.MATHS). 
The questionnaire was distributed to 563 students in Cyprus, aged 16-17 attending 
four different upper secondary schools (lyceums). 

The PAR scale consisted of 14 items, seven items measuring perceived 
parental aspirations for school mathematics (PAR-SC) and seven items measuring 
perceived parental aspirations for studying mathematics in HE (PAR-HE). Some 
items for the PAR-SC scale were adopted from Marchant et al. (2001) i.e. “My 
parents encourage me to do my best at school” and were paraphrased in order to be 
included in the PAR-HE scale i.e. “My parents encourage me to study at university”. 

Students self-reported their prior maths achievement (MACH) and inclination 
to mathematics (MINC). An indicative item for measuring students’ inclination 
(MINC) to mathematics is “Mathematics is my favourite subject”. The DISP.MATHS 
scale was adopted from the ESRC-TLRP project “Keeping open the door to 
mathematically demanding programmes in further and higher education” (Williams et 
al. 2008). A four point Likert-type response format was used for the scales. For each 
item students were asked to indicate whether they Strongly Agree=4, Agree=3, 
Disagree=2 or Strongly Disagree=1.  
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The items for the maths self-efficacy (MSE) scale were designed according to 
the mathematics curriculum for each year group. These were contextualised questions 
with mathematics problems drawn from the national textbooks of mathematics and 
from the ESRC-TLRP project (Williams et al. 2008). Students were asked to rate their 
confidence in solving each maths problem ranging from 1=Not confident at all to 
4=Very confident. 

Results 

The reliability of the two subscales of PAR, PAR-SC and PAR-HE was investigated 
separately using the Rasch model for Rating scales. According to Bond and Fox 
(2007) Rasch analysis provides indicators of how well each item fits within the 
underlying construct, in this case perceived parental aspirations. Model fit statistics 
and item analysis was carried out for each subscale using Winsteps. There were no 
statistically significant misfitting items in any of the subscales. The Cronbach alpha 
for the PAR-SC scale was α=0.54 and for the PAR-HE scale α=0.58.  

The two subscales were subsequently merged into one scale measuring 
perceived parental educational aspirations (PAR). The new PAR scale’s validity was 
also investigated using the Rasch model. Table 1 provides information on the INFIT 
MSNQ and OUTFIT MNSQ which are expressions of the fit of the item to the model. 
Infit MSNQ values that range from 0.7 to 1.3 are generally deemed to be acceptable 
infit statistics. As with the previous scales, none of the fit values posed a serious 
threat to construct validity. The Cronbach alpha for the PAR scale was α=0.72.  
 
Table 1.  PAR scale items fit statistics 

 
ITEM STATISTICS:  MISFIT ORDER 

-------------------------------------------------------------------------------------- 
|  INFIT  |  OUTFIT |  
|MNSQ ZSTD|MNSQ ZSTD| ITEM    ITEM description 
------------------------------------+----------+----------+-----------+-----------+-- 
|1.14  1.7|1.36  3.6|PAR-SC1  My parents encourage me to do my best at school.                                 
|1.16  2.3|1.23  3.2|PAR-HE6  My parents allow me to decide on my own what courses         
                              to choose at university.                                     
|1.09  1.3|1.2   2.9|PAR-SC6  My parents allow me to decide on my own what subjects    
                              to choose at school.  
|1.12  1.7|1.10  1.3|PAR-HE1  My parents encourage me to study at university.  
|1.11  1.1|1.01   .2|PAR-HE2  My parents think that obtaining a degree is important.  
|1.09  1.6|1.08  1.4|PAR-HE7  My parents stress the importance of mathematics more  
                              comparing to other courses at university.                   
|1.07  1.3|1.06  1.1|PAR-SC7  My parents stress the importance of mathematics more  
                              comparing to other subjects.                               
|1.00   .0|.94   -.6|PAR-SC2  My parents think that succeeding in school is important.    
|.97   -.6|.97   -.5|PAR-SC4  My parents don’t pressure me about my school work.                                       
|.97   -.6|.97   -.5|PAR-SC5  My parents think it is more important to be happy than   
                              worry about grades.    
|.95   -.9|.95  -1.0|PAR-HE5  My parents think it is more important to be happy than  
                              worry about studies.                          
|.85  -3.0|.86  -2.7|PAR-HE3  My parents are demanding to study at university.                               
|.86  -2.8|.86  -2.9|PAR-HE4  My parents don’t pressure me to study at university.                          
|.84  -3.0|.84  -3.1|PAR-SC3  My parents are demanding about my school work.     
------------------------------------+----------+----------+-----------+-----------+-- 

 
Figure 1 shows the item-person map. Bond and Fox (2007) note that the logit 

scale is the measurement unit common to both person ability and item difficulty. The 
Rasch analysis produces a single difficulty estimate for each item (δ) and an ability 
estimate for each student (α). Persons and items are located on the map according to 
their ability and difficulty estimates respectively. The numbers on the left represent 
the logit scale on which items and cases are calibrated. The symbol # presents the 
distributions of the cases (pupils) according to their ‘ability’ estimate. 



Joubert, M. and Andrews, P. (Eds.) Proceedings of the British Congress for Mathematics Education April 2010 

132 

Figure 1.  Item-person map for the PAR scale 
 

INPUT: 563 PERSONS 14 ITEMS  MEASURED: 562 PERSONS  14 ITEMS  56 CATS     
--------------------------------------------------------------------- 

  
          PERSONS - MAP - ITEMS 
               <more>|<rare> 
                     + 
                  .  | 
                     | 
                 .#  | 
    2             .  +T 
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                 ## T|  PAR-SC6 
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            .###### S| 
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                  .  | 
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                  .  | 
                     | 
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EACH '#' IS 4. 
 

 
Figure 1 shows good spread of the items and how the items rank in terms of difficulty. 
Apparently item 6 is the hardest item and item 2 is the easiest item to agree with. A 
possible explanation why item 6 is the hardest item to agree with, could be students’ 
reluctance to report their parents’ influence on their decision making about school 
subjects and university courses. The items of the two subscales for each category of 
parental influence behaved similarly, as the grouping of the items indicates. 

Parental permissiveness 

Parents’ attitudes to maths 

Parental support 

Parental pressure 

Parental demandingness 

Parental encouragement 

Parental expectations 
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Regression models for MINC, DISP.MATHS and MACH   

Once the Rasch analysis was conducted to check the validity of the new PAR scale,  a 
step-wise model selection procedure was adopted to build generalised linear models 
(GLM) in the statistical software R. PAR was used as an explanatory variable to 
model students’ inclination to mathematics (MINC), dispositions to study further 
mathematics (DISP.MATHS), and mathematical achievement (MACH). 

Other variables which were used for these models were background variables 
such as gender, socio-economic status (SES), maths self-efficacy (MSE) and 
mathematics course (Advanced or Core mathematics). Perceived parental aspirations 
(PAR) had a statistically significant effect on students’ MINC as can been seen in 
table 2, but it was not statistically significantly related to students’ DISP.MATHS and 
MACH as can be seen in table 3 and 4.  

 
Table 2.  The GLM model for students’ inclination to mathematics (MINC) 
 

MINC ~ MACH + Gender + Maths.course + SES + MSE + PAR 
 
                     Estimate  Std.Error  t-value  p-value   
   
(Intercept)          -3.65224    0.47560  -7.679   7.95e-14 *** 
MACH                  0.28492    0.02318  12.294    < 2e-16 *** 
Gender[T.Male]        0.51347    0.14531   3.534   0.000446 *** 
Maths.course[T.Core] -1.04515    0.15312  -6.826   2.44e-11 *** 
SES[T.low]           -0.25459    0.23453  -1.086   0.278186     
SES[T.medium]        -0.10846    0.22084  -0.491   0.623545     
MSE                   0.10594    0.05423   1.953   0.051304 .   
PAR                   0.16539    0.07881   2.099   0.036336 *   
 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Multiple R-Squared: 0.3706, Adjusted R-squared: 0.3621  
F-statistic:  43.9 on 7 and 522 DF,  p-value: < 2.2e-16  

 
Apparently the F-value (F=43.9, p=0.00) shows the model is statistically significant 
and it can predict 36% of the variance of MINC (R2= 0.36). Students’ mathematics 
achievement (MACH), gender, mathematics course and perceived parental aspirations 
(PAR) are statistically significant explanatory variables for this model, whereas MSE 
and SES are not statistically significant. 
 
Table 3.  The GLM model for students’ dispositions to study further mathematics (DISP.MATHS)  
 

DISP.MATHS ~ MACH + PAR + Maths.course + MINC 
 
Coefficients: 
                     Estimate   Std.Error  t-value   p-value   
  
(Intercept)           0.97657    0.34252    2.851    0.00452 **  
MACH                 -0.06132    0.02148   -2.855    0.00447 **  
PAR                   0.02024    0.08567    0.236    0.81327     
Maths.course[T.Core] -1.53449    0.13250  -11.581    < 2e-16 *** 
MINC                  0.50507    0.03754   13.454    < 2e-16 *** 
 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Multiple R-Squared: 0.508, Adjusted R-squared: 0.5044  
F-statistic: 139.2 on 4 and 539 DF,  p-value: < 2.2e-16  
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Clearly the F-value (F=139.2, p=0.00) shows the model is statistically significant and 
it can predict 50% of the variance of DISP.MATHS (R2= 0.50). Students’ inclination 
to mathematics (MINC), Mathematics course and MACH are statistically significant 
explanatory variables for this model. PAR is not statistically significant for predicting 
students’ dispositions to study further mathematics (DISP.MATHS), but since PAR 
influences MINC it could be argued that it influences DISP.MATHS indirectly. 
 
Table 4. The GLM model for students’ maths achievement (MACH)  
 

MACH ~ Maths.course + MINC + MSE + PAR + Gender + SES  
 
Coefficients: 
                     Estimate  Std.Error  t-value   p-value   
   
(Intercept)          16.44156    0.41508   39.610   < 2e-16 *** 
Maths.course[T.Core] -0.01069    0.26837   -0.040    0.9682     
MINC                  0.78390    0.06435   12.182   < 2e-16 *** 
MSE                   0.07055    0.09067    0.778    0.4368     
PAR                  -0.14396    0.16549   -0.870    0.3847     
Gender[T.Male]       -1.71009    0.23368   -7.318  9.55e-13 *** 
SES[T.low]           -0.78448    0.38955   -2.014    0.0445 *   
SES[T.medium]        -0.14056    0.36803   -0.382    0.7027     
 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Multiple R-Squared: 0.325, Adjusted R-squared: 0.3159  
F-statistic:  35.9 on 7 and 522 DF,  p-value: < 2.2e-16  

 
This model is also statistically significant (F-value=35.9, p=0.00) although it can only 
predict 32% of the variance of MACH (R2= 0.3159). Students’ inclination to 
mathematics (MINC), gender and SES were statistically significant predictors of 
MACH in this model. Although perceived parental aspirations (PAR) were not 
statistically significantly related to students’ mathematics achievement (MACH), 
PAR might influence MACH indirectly through its influence on MINC. 

Discussion  

A surprising finding of the present study was that perceived parental aspirations did 
not have a statistically significant effect on students’ achievement in mathematics. 
This finding contradicts other researchers (Fan and Chen 2001; Aunola et al. 2003) 
who found that parental aspirations have an impact on students’ mathematics 
achievement. This contradictory result might be due to the fact that in the present 
study parental aspirations were reported by students. If parents had self-reported their 
aspirations for their children, parental aspirations could have been proven statistically 
significant as the literature suggests.  

 Another plausible explanation why students’ perceived parental aspirations 
were not statistically significant can be attributed to the students’ age. Bearing in 
mind that the sample consisted of adolescent students, it could be argued that parental 
influence was ‘denied’ and students reported low parental aspirations which might not 
represent their parents’ actual aspirations. This finding adds additional support to 
Neuenschwander’s et al. (2007) argument that “as students seek more autonomy from 
their parents in adolescence they begin to reflect upon and to disagree with their 
parents’ attitudes and beliefs. We expect that parents’ expectations may lose some of 
their predictive power across adolescence” (p.601). 
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Our statistical analysis showed that there are different ways in which students 
perceive parental influence which is consistent throughout their educational career 
(school or HE). The items of the two subscales of PAR, which measure the same 
category of parental influence, such as parental pressure, parental encouragement and 
parental support, appear to behave similarly (see figure 1). Other researchers have 
also noted different forms of parental influence such as behavioural control and 
pressure in contrast to psychological support (Campell and Mandel, 1990). The 
diverse ways students perceive parental influence might therefore explain why 
parental aspirations did not have a statistically significant effect on their mathematics 
achievement, as the statistical analysis showed. 

On the other hand however, perceived parental aspirations were statistically 
significantly related to students’ inclination to mathematics. Students who are 
positively disposed towards mathematics reported higher perceptions of parental 
aspirations. This finding further supports the notion that parental aspirations have a 
significant effect on students’ attitudes towards mathematics (Ma, 2001). Surprisingly 
perceived parental aspirations were not statistically significantly related to students’ 
dispositions to study further mathematics in HE. Previous research findings have also 
noted that students make their choices for future studies autonomously whilst they 
feel that their parents approve of their choices. Beyers and Goossens (2008) stress that 
“parents might react positively when the adolescent makes an autonomous choice of 
his or her study or career, rather than actively encouraging the adolescent to make 
such a choice” (p.169). 

We suggest that the concept of ‘symbolic violence’ suggested by Bourdieu 
(1977) can be useful for understanding students’ perceptions of parental influence. 
Bourdieu (1977) argues that symbolic violence is at the heart or every social 
relationship. He defines symbolic violence as ‘the gentle invisible form of violence, 
which is never recognised as such, and is not so much undergone as chosen’ (p.192). 
We argue that students’ perceptions of parental influence might not correspond to 
their parents’ actual aspirations or influence, which remain hidden but are all the more 
powerful because they are relatively invisible. If so parental influence is subconscious 
and therefore misrecognised by the students and perhaps even by their parents. 

Conclusion 

The present study has developed and validated a scale for measuring perceived 
parental aspirations (PAR) with the use of the Rasch model. The calibration of the 
two subscales of PAR indicates that there are different categories of parental influence 
which are perceived by students in similar ways. Whether students reported perceived 
parental aspirations for school mathematics or for studying mathematics at university, 
they perceived different forms of parental influence in the same manner. Thus we 
argue that parental educational aspirations are the same underlying construct cross 
educational levels (school or HE). The ways parents communicate their educational 
aspirations to their children and the influence of parental aspirations on students’ 
dispositions towards mathematics still deserves further investigation.  
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This paper reports on a study into the effect of real-world contextual 
framing in sequence questions. Alternative versions of the same questions 
were presented in explicit, algebraic, word and pattern contexts, and set to 
a sample of 594 Year 13 students (aged 17-18) in a one-hour test. Facility 
levels of the questions were then compared. In addition, the paper presents 
results of a student questionnaire on real-world context which 
accompanied the test. 
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Introduction 

A well known problem from the Rhind (or Ahmes) papyrus of 1650 BC (Boyer, 
1985) may be stated in the form: 

 ‘Seven houses have seven cats per house. Each cat catches seven mice. Each 
mouse eats seven ears of spelt, each ear would have produced seven hekats of 
grain. What is the sum of the houses, cats, mice, ears and grain?’ 

‘Word’ problems, set in some context, have therefore been around a long time, 
and have been the subject of considerable research. While current mathematics 
curricula often frame mathematics questions in ‘real-life’ terms, the utility and realism 
of many of the contexts used in mathematics problems have been called into question 
(Wiliam, 1997, Boaler, 1993b). Some research has suggested that the perceived 
realism of contexts may be gender-dependent (Boaler 1994) Much research has 
focused on understanding the difficulties that many children seem to have in applying 
realistic constraints to ‘real-world’ problems (Verschaffel et al., 1994, Verschaffel et 
al., 1997, Cumming and Maxwell, 1999, Silver, 1993), or of transferring from one 
context to another (Boaler, 1993a). In terms of designing suitable examinations in 
mathematics, the validity of contexts deployed in summative assessment tasks has 
been identified as a particular issue (Ahmed and Pollitt, 2007, Pollitt and Ahmed, 
2001, Pollitt et al., 2007). Some research has suggested that linguistic and cultural 
factors may affect the interpretation of real-world context in questions (Pollitt et al., 
2000, Barwell, 2001). Cooper and Dunne (2000) have, in particular, provided a 
critique of the use of real-world contexts in national curriculum assessments on the 
grounds that they discriminate by social class.  

Despite this work, little research has directly investigated the effect of real-
world context on the facility of questions, or on the attitudes of learners to its usage in 
tasks. Moreover, most research has focussed on pre-16 mathematics. This paper 
describes a study conducted to investigate these issues, using 17-year old students and 
the AS-level topic of sequences. 

The extent to which real-world contexts are used in UK public examination 
syllabuses varies substantially. For example, an analysis (carried out as part of the 
study reported in this paper) of pure mathematics papers from two current GCE A/AS 
specifications – OCR ‘A’ and ‘B’ (MEI) - suggests that they utilise real-world 
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contexts in questions contributing about 5% of the marks and 30% of the marks 
respectively. This difference of emphasis can be traced back to ‘modern’ and 
‘traditional’ A-level syllabuses of the 1970s and 1980s (Little, 2010, in press). 

The research indicated above suggests a fundamental dilemma concerning the 
use of real-world context, or, as we prefer to call it, real-world contextual framing 
(RWCF) (Little, 2008a, Little and Jones, 2007) in mathematics questions. On the one 
hand, by making a connection between the abstract world of mathematics and 
everyday, or scientific, contexts, we are reinforcing the utility of mathematics as a 
language for explaining the patterns and symmetries of the ‘real’ world. On the other 
hand, if we manipulate and ‘sanitise’ real-world experiences to enable them to be 
modelled by a pre-ordained set of mathematical techniques, then the result can appear 
to be artificial and contrived, or, in the words of Wiliam (1997) a ‘con’-text, 
providing a deception that the activity is worthwhile. 

Another dilemma concerns the effect of real-world contextual framing on 
questions. On the one hand, it may be said to help to solve mathematical tasks by 
providing the solver with a ‘mental scaffolding’ (Vappula and Clausen-May, 2006) 
for solving the problem; on the other, it may be seen to complicate the task by 
requiring the solver to identify and match mathematical concepts with elements of the 
real-world context (Pollitt and Ahmed, 2001). This may assume knowledge of the 
context as well as the mathematics, which may actually be disadvantageous in solving 
problems in the manner intended, or according to the artificial rules of the 
mathematics classroom (Boaler, 1994). 

This paper considers the effect of RWCF on post-16 examination questions. 
The study forms part of doctoral research which also explores the wider historical, 
philosophical and pedagogical roots of real-world context (Little 2010, in press). 

Theoretical Framework 

Some theories of teaching and learning, such as Realistic Mathematics Education 
(see, for example, Freudenthal, 1991, Treffers, 1987, Dickinson and Eade, 2005) 
espouse the view that ‘realistic’ contexts, or contexts that are ‘real’ to learners, play a 
coordinating role in the development of mathematical concepts. When used in public 
examinations, however, assessment theory requires that questions are evaluated 
according to their construct validity (Wiliam, 2007). Ahmed and Pollitt (2007) use the 
term construct fidelity to assess the extent to which a real-world context faithfully 
tests what it intends to assess. They see context as a threat to validity, as it introduces 
variability to the question–setting and answering process. Additional demands of 
comprehension on candidates may be considered to introduce a construct irrelevant 
variance (Wiliam, 2007) to the assessment.  

On the other hand, the subject criteria for GCE A/AS Mathematics 
(Qualifications and Curriculum Authority, 2002) require schemes of assessment to: 

‘Recall, select and use their knowledge of standard mathematical models to 
represent situations in the real world; recognise and understand given 
representations involving standard models; present and interpret results from such 
models in terms of the original situation, including discussion of the assumptions 
made and refinements of such models.’ 

‘Comprehend translations of common realistic contexts into mathematics; use the 
results of calculations to make predictions, or comment on the context; and, where 
appropriate, read critically and comprehend longer mathematical arguments or 
examples of applications.’ 
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These assessment objectives would appear to require a degree of real-world 
contextual framing in test items. 

How do questions involving real-world context differ from those deploying 
language from the mathematics register (Pimm, 1987)? They require the solver to 
match elements of the real-world context with mathematical concepts and variables. 
The extent to which this matching process is explicit or implicit in the question, or 
overt or camouflaged, would appear to be relevant to the facility of the question. 

Methodology 

In order to investigate the effect of RWCF in post-16 mathematics, the study selected 
a topic from A/AS level which appeared to be amenable to a variety of approaches, 
both with and without RWCF. An analysis of past paper suggested that sequences and 
series was such a topic, and that questions on this topic may be categorised as follows: 

• Explicit (e) questions, which contained no real-world context, and explicitly 
define the sequence to be used in the question; 

• Algebraic (a) questions, which used mathematical notation, such as un or sigma 
notation; 

• Word (w) questions, which used a real-world context defined in words; 
• Pattern (p) questions, in which a sequence was defined using a pattern context. 

The study therefore constructs e, a, w and p versions questions of with similar 
or identical solutions, in order to compare their facility.  

The study comprised a one-hour test and a short student questionnaire. The 
test consisted of four questions on arithmetic sequences (AI to AIV) and four on 
geometric sequences (GI to GIV), and was given to a sample of 594 year 13 students 
(aged 17-18) from four centres. Students were randomly allocated to one of four tests 
(A, B, C or D), each of which contained one of four versions (e, a, w and p) of the 
questions. The solutions to each version were, except in a few small details, the same.  

The total mean scores for the ‘e’, ‘a’, ‘w’ and ‘p’ versions were calculated and 
compared, to establish an overall measure of difficulty for each type of question.  
Each part question was then considered, using four difference of two means test to 
compare the ‘e’ version with the ‘a’, ‘w’ and ‘p’ versions, and the ‘w’ version with 
the ‘p’ version. The question versions, and their solutions, were then analysed in 
greater detail, in order to conjecture reasons for significant differences in response. 

The questionnaire invited students to consider six statements on pure and 
applied mathematics and real-world context in questions, and register their level of 
agreement, from ‘strongly disagree’ to ‘strongly agree’. These questions are listed in 
Fig. 2 in the ‘results’ section. They were then given space to make further comments. 
The results of the questionnaire were compared by gender and by whether students 
declared English as their first language. Open comments were classified into broad 
similarities of opinion.   

Results 

The mean total number of marks out of 40 for each version were as follow: 
 

 Explicit: 28.17,  Algebraic: 20.17,  Word: 22.31,   Pattern: 23.37 

 
Thus, the ‘e’ versions (explicit), as might be expected, gained higher marks 

overall, followed by the ‘w’ and ‘p’ versions, with the ‘a’ questions proving to be the 
most difficult. However, this pattern of results did not hold for all of the questions 
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Fig. 1 gives the versions of question AI, together with the mean scores for 
each part question, and is followed by a sample analysis. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Versions of question AI with mean scores. 
 

For this question, both parts of the ‘a’ version were significantly more 
demanding than the ‘e’ version, and the ‘w’ version proved more difficult than the ‘e’ 
version, with a more significant difference in part (ii). Comparing the ‘e’ with the ‘p’ 
versions, there was no significant difference in scores for part (i), but part (ii) was 
significantly more difficult in the ‘p’ version. Finally, comparison of the ‘w’ and ‘p’ 
versions shows the ‘w’ version to be significantly more difficult than the ‘p’ version. 

The ‘e’ v ‘a’ results are easily explained in terms of additional demand of 
algebraic notation, in particular sigma notation. In the ‘e’ version, the explicit 
reference to ‘arithmetic progression’, ‘term’ and ‘sum’ leads the solver directly to the 
appropriate formulae. These cues were not present in the ‘w’ version, which requires 
solvers to translate elements from the real-world context to the algebraic model (‘first 
week £7’ = a, ‘£3 more’ = d). This would account for the extra difficulty of the ‘w’ 
version compared to the ‘e’ version. 

On the other hand, the ‘p’ version of part (i) proved to be no harder than the 
‘e’ version. This might be because the first three terms of the sequence are stated 
explicitly (7 cm, 10 cm, 13 cm, ..), thus making the match to an arithmetic model 
easier than in the ‘w’ version. Indeed, it is possible to think within the context to 
derive the number of terms (length increased by 67 = 3 × 29, so 30 sides). This type of 
‘first principles’ thinking is not available in part (ii), which perhaps explains why this 
proved harder than the ‘e’ version. 

The explicit statement of the first three terms in the ‘p’ version, thus hinting at 
an arithmetic sequence model,  might also explain why this version proved to be 
easier than the ‘w’ version, where this cue was not given 

Similar analyses of all eight questions suggest a number of factors which 
affect the facility of questions, as follows. 
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• The use of algebraic language such as sigma notation and iteration formulae 
added substantially to the difficulty of questions. 

• The requirement to identify the type of sequences and to use the appropriate 
term or sum formula from data given in a real-world context also adds to the 
demand. 

• Some real-world contextual framing requires solvers to interpret text carefully 
in order to select the appropriate match between context and model. Semantic 
ambiguities may also cause unintended errors. 

• In contrast, questions which can be solved by ‘thinking within the context’ can 
be as easy as explicit formulations. 
The results of the questionnaire, together with the questions asked, are shown 

in Figure 2. Two thirds of the students believed that questions set in real-world 
context are harder than those without context. 33% agreed and 30% disagreed that 
RWCF made questions more interesting, whereas 55% agreed and 30% disagreed, 
with the statement that real-world context shows how mathematics is useful. Over 
half of the students preferred pure mathematics to applied mathematics, and felt that 
pure mathematics is interesting in its own right. 
  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: questionnaire results 
 

The results suggested that more girls prefer pure to applied mathematics. Girls 
agreed more with the statements that real-world contexts make questions harder and 
that pure maths is interesting as a subject in its own right, whereas boys agreed more 
with the statement that questions with real-world context are more interesting. 
Overall, these results show a consistent pattern of girls preferring pure mathematics 
questions without real world contextual framing. 

Students for whom English was their first language agreed more strongly with 
the statements that A/AS mathematics is a useful subject which can be applied to the 
real world and that maths questions set in real-world context are harder. 

The first result might be interpreted as showing cultural differences 
concerning the nature of mathematics. The second result is perhaps surprising, as one 
might have expected non-native speakers to find contextualised questions harder to 
comprehend. However, as the number of students in the first category was relatively 
small (49), the sample may not be large enough to be representative. 

The variety of opinions which students hold on the use of real-world context is 
indicated by the following selection of comments: 

 “Applying maths to real situations is certainly more difficult but a lot more 
interesting and satisfying to complete rather than straight pure maths questions.” 
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 “I strongly dislike real world context questions as they turn maths that I can do 
into something I can barely understand.” 

“I prefer the questions which are worded (without context). I believe this is due to 
dyslexia, which means I find (contextualised questions) harder to understand.” 

“Sometimes (contexts) help if you don't know terms or to get an idea of what the 
question requires, but otherwise they are just plain patronising!”  

 “Real world questions don't show you how maths is useful, because questions in 
context, such as question 2, are not useful. It is about a beetle, not useful in 
normal everyday life.”  

Conclusions 

How do these results inform research on real-world contextual framing? It should be 
acknowledged first that these results apply to post-16 students of mathematics only, 
and test results are based on one only one topic. Further research using different 
topics would be needed to test the generality of the conclusions. However, they 
provide strong evidence that setting sequence questions in real-world contexts does 
indeed add to the overall demand, though a context can on occasions provide ‘mental 
scaffolding’ to help the solver to use context-specific heuristic strategies. For 
example, questions involving the ‘term’ formula from an arithmetic progression [un = 
a + (n −1)d] are amenable to calculations using first principles (e.g. nth term = 1st 
term + (n − 1) × the ‘step’). On the other hand, using the ‘sum’ formulae for both APs 
and GPs is a pre-requisite to the efficient solutions of problems involving summation.  

One could argue that such solutions effectively side-track the application of 
standard algebraic formulae to model realistic situations. The potency of algebraic 
formulae lies in their universality and blindness to individual contexts (Little, 2008b), 
and, in resorting to context-specific thinking to solve these questions, students are 
avoiding the necessity to transfer and abstract from context to mathematical model, 
which is, arguably, the heuristic strategy intended by the questions. 

However, questions with RWCF need to be carefully constructed to avoid 
unwanted distracters and ambiguities. They can require greater interpretative acuity 
from the solver, in order to correctly match the context with the mathematical model. 
They may therefore disadvantage students with dyslexia, or non-native language 
speakers.  Contextualised questions therefore require careful revision to ensure that 
the language used is clear and unequivocal. It is also important to consider the overall 
length of questions in relation to the time allowed to answer them: asking students to 
read and comprehend complex, novel contexts in a timed written examination clearly 
adds to the stress of the experience, and, by placing too much emphasis on 
comprehension skills, compromise the mathematical goals of the assessment.  

Students in this survey generally see real-world context as reinforcing the 
perception that mathematics is useful, although contexts can be perceived as artificial. 
Some comments from students resonate with researchers (e.g. Boaler, 1994, Wiliam, 
1997) who have criticised real world contexts on the grounds of artificiality. The 
gender differences identified above are also of interest, with girls preferring pure 
mathematics and non-contextualised questions, but boys finding such questions more 
interesting. 

What is the function of real-world context in these sequence questions? An 
earlier paper on linear equation questions argued that, notwithstanding that students 
link real-world context to applicability of mathematics, most contextualised questions 
have little or no practical utilitarian value (Little, 2008a). They are, rather, embryonic, 
albeit contrived, exercises in modelling, which force the student to make connections 
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between the world of algebra and mathematics and real-world concepts such as 
finance, percentages, and physical patterns and shapes.  

It is perhaps unrealistic, however, to expect short, closed examination 
questions to do more than this, since genuine mathematical modelling requires 
strategic thinking that is not possible to test in a timed written examination. Such 
questions might, as the current subject criteria for A/AS Mathematics require, test 
students’ ability to ‘recall, select and use their knowledge of standard mathematical 
models to represent situations in the real world and present and interpret results from 
such models in terms of the original situation’. However, they manifestly do not 
‘include discussion of the assumptions made and refinements of such models’. 
Neither do they require students to ‘read critically and comprehend longer 
mathematical arguments’, which a dedicated comprehension paper might do. It is 
therefore difficult to see how A/AS level syllabuses that rely wholly on short written 
examination papers can be said to satisfy such requirements.  
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Analysing children’s calculations: the role of process and object 

Carol Murphy  

University of Exeter  

This paper reviews the role of process and object in young children’s 
calculation strategies. By drawing on the Action, Process, Object, Schema 
(APOS) framework (Dubinsky and McDonald, 2001) children’s 
calculation strategies are analysed. It is suggested that the opportunity for 
children to reflect on the actions they perform and also to reason about 
them is important in developing a coherent framework and hence a deep 
understanding of the calculation strategies they are using.     

Introduction  

In relation to the current concern to support understanding in mathematics (Williams, 
2008) this study examines children’s understanding of the calculation strategies that 
they use.  It explores the strategies that children use in single digit addition and 
subtraction for example (7 + 8; 9 – 7) as they move to the use of single to multi-digit 
addition and subtraction (for example 5 + 13; 16 – 9).  

The children studied were from KS1 classes.  Whilst not identified as needing 
intensive support, they were identified by their teachers as lower attaining. It is 
recognised that these children are often seen as ‘passive’ learners. They are often 
tentative about their own understanding in mathematics (DCSF, 2007) and may not 
make the expected progress in KS2.   

The role of processes and objects  

It has been suggested that lower attaining children rely on counting procedures in 
addition and subtraction (Gray, 1991). Such strategies are seen as primitive and 
inefficient. A reliance on such strategies could explain the lack of progress in KS2. 
Whilst it is possible to be successful in calculations up to 20 or so using such 
strategies, progression to calculations with other 2 digit numbers becomes less 
successful.  

The National Strategies in England have encouraged the use of flexible 
strategies that provide a more efficient method for calculations. It is now recognised 
(Gray, 1991, Steffe, 1983) that there is a progression from simple counting strategies 
(‘count-all’ and ‘count-on’ strategies) and the use of commutativity (‘counting-on 
from the larger number’) to the use of number facts (additive components) and place 
value. Initiatives such as the National Strategies in England have proposed the explicit 
teaching of calculation strategies but limited understanding of the key ideas 
underlying the progression may result in children becoming passive recipients of the 
calculation strategies that are presented to them in the classroom (Murphy, 2004).  
Such flexible strategies require more active ways of using number (Plunket, 1979) 
and their use goes beyond the counting procedures that lower attaining children often 
rely on.  

Sfard (1991) recognised a reliance on ‘count all’ where children count out 
each set (for example 3 + 4 becomes 1,2,3 and 1,2,3,4) and described this as the 
child’s view of numbers as processes, rather than as objects.  In this way the 3 has to 
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be counted out. This is distinct from seeing 3 as a cardinal number or object that can 
be ‘counted on’ from. Sfard’s work looked at the dual nature of processes and objects, 
where “the ability of seeing a function or a number both as a process and as an object 
is indispensable for a deep understanding of mathematics…” (p. 5). In order to work 
with calculations more flexibly children need to see the dual nature. Gray and Tall 
(1994) have also referred to this as a ‘procept’ where children see the symbol for an 
operation as both a process and as a concept.  

Dubinsky and McDonald’s (2001) work has been used to study undergraduate 
level mathematics but their theoretical framework Action-Process-Object-Schema 
(APOS) is drawn on here as a possible way to provide insight into children’s 
calculations as they move from counting procedures to more flexible strategies. As an 
action addition or subtraction are said to be carried out as transformations of objects. 
Understanding is limited to the performance in each situation. By repeating the action 
internal reflection is possible and the process can be described and the steps reflected 
on, even without performance. By reasoning about the properties of the processes 
ideas are treated as objects. The eventual aim is that these actions, processes and 
objects become a coherent frame or schema. It could be argued that in order to be 
flexible in the use of calculation strategies children need to be able to reason about the 
processes and even to be aware of the overall frame or schema.  

In this study examples from a study into children’s calculation strategies are 
presented. The children’s strategies are analysed according to their use as actions, 
processes, objects or schemas. Can the children’s use of counting procedures be 
interpreted as actions or is it possible to identify reflection in relation to a process or 
reasoning in relation to an object? Are the children also able to see the overall 
coherent framework or schema? For example a child may use a direct modelling 
strategy for 13 + 8 by counting out one set of 13 toys and another set of 8 toys. These 
two sets can then be physically pushed together and the total number of toys counted 
altogether. It would seem possible to interpret this as an action. However if the child 
was able to reflect on the action they had taken without performing it again would this 
be seen as a shift to a process? Would the child also be able to reason why they had 
used the process?  By interviewing children it may be possible to see if the children 
see a strategy as an action that is performed or whether they are able to reflect on the 
strategy or even reason it.  

The use of the Clinical Interview  

Clinical interview refers to a class of interview methods that typically involve an 
extended dialogue between adult and child (Ginsburg, 1997). This provides an 
intensive interaction with an individual child and allows for the observation of a 
child’s work with ‘concrete’ intellectual objects. As a research method it is 
deliberately non-standardised. It provides an interpretive orientation where the 
examiner is engaged in interpreting each child’s responses. Interviews may start with 
some common questions but the examiner will react to responses and tailor questions 
to the individual child. In this way it can provide a way to explore “deep insights into 
children’s thinking” and go “beneath the surface” (Ginsburg, 1997, p.2).  

The interview schedule was based on an adaptation of the diagnostic tasks 
developed by the Shropshire Mathematics Centre (1996) and introduces children to 
addition and subtraction problems starting with single digit and moving to multi digit 
problems. The main study is with 72 children aged between 6 and 7 years old from 
twelve classes. All of the 72 children have been assessed as average to low attainers 
by their teachers and represent children who use both spontaneous and taught 
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procedures but may not always use these correctly. Four children from one class were 
selected from the early stages to pilot the analysis.   

Results  

In this paper results are presented from four children, Helen, Cassie, Bill and Jim who 
were in a Year 2 class (6 to 7 years old). The class teacher had recently modelled the 
use of the hundred square for the addition of multi-digit numbers and in particular she 
had encouraged the children to count on in tens rather than counting on in ones.  

In the interviews the children were shown calculations one at a time. They 
were asked what the answer was and then asked to explain how they had worked the 
answer out. Observations were made of the children’s work and the resources they 
used were also noted. It was anticipated that the children would use a mix of 
spontaneous and taught strategies.  

Helen 

Helen chose to draw figures to help her calculate 6+9 (figure 1) and 13 – 6 (figure 2). 
It would seem that she was engaged with addition and subtraction as an action and she 
was able to talk through the steps as she took them. There is little evidence to suggest 
that she was reflecting on the actions as processes or even reasoning about them as 
objects. 
 
Figure 1: 6+9 
 

 
 
Figure 2: 13 - 6 

 

However Helen’s solution to the subtraction problem 7-6 was different: 
H: You have six and then you only need to add one. So if you take away 6 there 
will only be one left. ‘Cos it is the other way round.  

In this solution Helen was able to describe the action she had taken and reflect 
on this as a process without performance.  She used her knowledge of counting in 
ones ‘You only need to add one’ and she used addition and subtraction as inverse 
operations.  Was she able to reason this or was she using this implicitly? Her use of 
the next word ‘So…’ might suggest that there was an element of reasoning about the 
process as an object.  

Cassie 

Cassie used her fingers and a hundred square to count on for the addition 5+7: 
C: I can’t figure it out.. I think it’s 12 or 11. Not sure. My fingers got 12 but I got 
11 on the hundred square.  

Ex: When you did it with your fingers what did you start with?  
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C: I started with five and then I went 1,2,3,4,5,6,7 – went on 12 (Counts on again 
on hundred sq). Oh - I made it.  

This could suggest Cassie’s use of actions in performing the calculation. When 
she arrived at two different answers there was a need for her to review the steps she 
had taken in the actions. Although she did arrive at the correct solution there is little 
evidence that she reflected on the action as a process. She repeated the performance 
rather than reflected on it.  

Cassie also used a ‘count on’ procedure to add 7+8 and got the answer 15. She 
then used the procedure to add 6+9.  

C:  Mmmm… 15. I got 15 again. 

Ex: Did you expect it to be the same? 

C: No. I didn’t even know it would be the same 

Cassie checks her calculation for 7 + 8. 

C: Both answers the same. 

Again Cassie was relying on actions. The equivalent solutions to the two 
additions did prompt her to review the steps she had taken but, again, she repeated the 
performance rather than reflected on it.  

Bill 
Bill was less reliant on counting strategies for his solution for 10+8. 

B: Well I just add 10 and 10 is 20 and I took two away. 

Bill was able to draw on known facts and to carry out an adjustment to find the 
solution. He was able to describe or reflect on the process without performance. 
However in the account that he gave it was less evident that he was reasoning about 
the process, he does not explain why he carried this out.  

Bill used a counting on strategy for 7+8. He made an error in counting and 
gave an incorrect response 14. However for the next addition 6+ 9 he responded: 

B: 14 again. 

Ex: How did you know it was 14 again?  

B: ‘Cos you lose one from that one and you add that one there. 

Although Bill’s strategy for 7+8 provided the wrong answer he used the 
solution to inform the next calculation. He did not have to repeat the action for 6 + 9 
but was able to reflect on the action as a process. He was also able to reason why he 
had used the process (‘Cos if you lose one from that one…) and it is possible that he 
was treating the ideas as objects.   

Bill also showed evidence of reflecting on his actions as a process for the 
addition 8+13. Bill first gave the answer as 23, and then he went on to explain his 
strategy. 

B: Well I just… It’s not 23.’ 

Ex. How did you know it wasn’t 23? 

B: Cos it’s 8, not 10. If it was 23 you would have to have a ten there’ (points to 
the 8) 

Ex. So what is it?  

B: 21.  
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Here Bill described the action as a process without performance and was also 
reasoning the solution.  

Jim 

Jim used counting strategies for single digit additions. However for 10+8 he asked to 
try another way using the hundred square as he had been shown by his teacher:  

Jim: You could go back to 8 and then count on 10, then you do down one and 
you’re answer would be 18.  

Although not relying on counting strategies Jim’s account suggests that he was 
carrying out an action. He did describe and reflect on the action as a process but there 
is little evidence that he was reasoning about the process.  

His attempt to use this strategy was not always effective. For example 8 + 13:  
Jim: So I go all the way to 13 and then I jumped down one and add on 3. So it will 
be 26.  

Ex. Why were you adding on the 3? 

Jim: You go down 10 and you go across 3.  

Ex. If you started on 13 and then added ten and then another 3 you would be 
adding what? 

Jim: You would be adding tens and units. That’s what we call it.  

Here Jim did reflect on the action as a process but he was unable to reason 
why he had used the action and referred to this as a strategy that he had been taught.  

Concluding Remarks 

These short accounts have attempted to illustrate how the APOS framework might be 
used to analyse children’s calculation strategies. It is recognised that further studies 
are needed to refine the use of this framework but even with these short accounts the 
results show possible insights into children’s approach to calculations.  

The children were often reliant on counting procedures and on occasions 
would make errors in their use. However they would often be able to reflect on the 
action as a process and to describe this without performing it. There was also 
evidence that children could reason about the processes using properties of the 
numbers. In these examples it is not the case that the children would consistently 
work in one area of APOS. Their ability to reflect or reason was often reliant on the 
problem presented to them. Further studies would be needed to determine if other 
children also moved within the APOS framework.  

These insights also have possible implications for the teaching of calculations. 
If the aim is to support children’s understanding and their use of flexible strategies it 
would seem that we should be supporting children in working towards the use of 
objects, in that they can reflect on their actions, and even reason about the processes 
they use. Cassie’s focus on the actions caused her to be surprised regarding the 
equivalent solutions. In order to support her to reflect more on the process or to reason 
about the number properties, further work on equivalence using visual images or 
objects would seem appropriate. 

Jim’s reflection on his action as a process would initially suggest that he is 
developing a use of flexible strategies as he uses ‘jumps’ of ten rather than ‘counting 
on’ in ones. He is also able to reflect on and describe the action without performance. 
However his lack of reasoning would suggest that he does not see this process as an 
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object. If the eventual stage is for the actions, processes and objects to become part of 
a coherent framework or schema, it would seem important that Jim is supported in 
being able to reason the use of the jumps of ten so that there is a shift from process to 
object.   

In order for children to become active learners the need to be able to reflect on 
and reason about the actions and processes they use would seem paramount. Without 
the opportunity to do this it would not seem possible for children to progress to the 
development of a coherent framework or schema that would support them in using 
calculations flexibly.   
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Exploring the role of confidence, theory of intelligence and goal orientation in 
determining a student’s persistence on mathematical tasks  

Ann O’Shea, Joan Cleary and Sinead Breen  

NUI Maynooth, IT Tralee and St Patrick’s College, Dublin 

We consider Dweck's (1986) theory on the relationships between students' 
beliefs concerning the nature of intelligence, their learning goal 
orientation, their confidence, and their willingness to seek challenges and 
to persist when faced with difficulties. Dweck's theories have been studied 
for the past 20 years, for example by Stipek and Gralinski (1996) among 
many others. In this study the beliefs and behaviour of 182 third level 
students were investigated. These students had all chosen to pursue an 
undergraduate course in a numerate subject. It was found that the 
relationships between theories of intelligence and goal orientations were 
more complicated than those postulated by Dweck, and in particular seem 
to differ between the male and female students. We also found that a 
student's theory of intelligence, goal orientation, and confidence in his 
mathematical ability influenced his persistence at difficult mathematical 
tasks. However, once again, differences were found between the male and 
female groups.  

Keywords: Confidence, goal orientation, theory of intelligence, persistence  

Introduction  

Dweck (1986) conjectured that a student’s theory of intelligence and confidence in 
his/her present ability combine to influence the student’s behaviour when presented 
with a mathematical task, particularly a challenging or unfamiliar task. A preliminary 
study by the authors (Breen, Cleary and O’Shea 2007) failed to endorse this theory 
and found that an individual’s level of confidence but not his theory of intelligence 
played an important role in how he approached, persevered with and performed on a 
task. A more comprehensive study, using an instrument specially constructed for this 
purpose (Breen, Cleary and O’Shea 2009), was undertaken and initial findings are 
presented here.  

Figure 1 overleaf summarises and illustrates Dweck’s theory. The theory 
asserts that children’s theories of intelligence seem to orient them towards different 
goals, which then appear to set up different behaviour patterns. We will focus, like 
Dweck, on performance and learning goals. Students who display performance goals 
wish to receive positive feedback on their abilities from themselves or others, and to 
avoid demonstrating a lack of ability. Students with learning goals however, wish to 
increase their competence and acquire new understanding. Those who believe 
intelligence is a fixed trait tend to display performance goal behaviour, with their 
entire process of task choice and pursuit built around their concerns about their 
ability. If their perceptions of their own ability are low, they tend towards defensive 
strategies, avoiding and withdrawing from challenge. On the other hand, children who 
believe intelligence is malleable focus on progress and mastery through effort in both 
their choice and pursuit of tasks. Even children whose assessment of their present 
ability is low will choose challenging tasks that foster learning.  
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Theory of Intelligence Goal Orientation Confidence in 

present Ability 
Behaviour 
Pattern 

 
Entity Theory             
(Intelligence is fixed) 

 
Performance Goal 

 
If high        

 
Seeks challenge 
High persistence 

  If low         Avoids challenge 
Low persistence 
 

Incremental Theory   
(Intelligence is malleable) 

Learning Goal If high        Seeks challenge 
High persistence 

  If low           
Figure 1: Achievement goals and behaviour patterns (following Dweck 1986) 

 
Dweck and her colleagues have continued to study and refine her theories. For 

example, Grant and Dweck (2003) describe 5 studies concerned with the impact of 
achievement goals. They found evidence that learning goals have a positive influence 
on performance and motivation in challenging situations. Performance goals were 
also found to have positive effects when major difficulties were not encountered but 
they were found to have negative effects in the face of challenges. Mangels, 
Butterfield, Lamb, Good and Dweck (2006) studied the manner in which theory of 
intelligence beliefs influence how students respond to negative feedback and their 
ability to learn from mistakes. Students were asked general knowledge questions, they 
were told whether their answer was right or not and were immediately shown the 
correct answer. The study found that entity theorists were less likely to focus their 
attention on the correct answer and were less likely to recall it later. The authors 
postulate that their results may explain how theory of intelligence beliefs influence 
learning and achievement. 

Middleton and Spanias, in their 1999 review of mathematics education 
research on motivation, contend that students who are intrinsically motivated engage 
in academic tasks because they enjoy them and their motivation tends to focus on 
learning goals, whereas students who are extrinsically motivated engage in academic 
tasks to obtain rewards and their motivation is centred on performance goals. They 
support Dweck’s belief that those who are intrinsically motivated exhibit adaptive or 
pedagogically desirable behaviour such as selection of more difficult tasks, 
persistence in the face of failure and selection of deeper learning strategies. They also 
observed goal orientation to be a strong predictor of achievement, with students with 
an orientation toward learning (or mastery) goals tending to perform better than those 
with performance (or ego) goals regardless of the learning situation. Middleton and 
Spanias (1999) explain how, by the middle grades, many students begin to believe 
that success and failure are attributable to ability and that effort seldom results in a 
change in their success patterns. Those who continue to conceive of ability as 
amenable to augmentation through effort tend to expend more effort and thus are 
better achievers than those who believe ability is fixed. Findings show that a belief in 
effort as a mediator of ability and failure as an acceptable stage in the learning of 
mathematics also increases students’ confidence in relation to the subject.  

Stipek and Gralinski (1996) also studied the relationships between children’s 
goal orientations, theories of intelligence, and achievement. They found than an entity 
theory of intelligence was associated with performance goals and that an incremental 
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theory of intelligence was associated with learning goals, although they note that the 
relationships are not strong.  

Yet other studies have not fully supported Dweck’s theory. Dupeyrat and 
Mariné (2005) found that theories of intelligence did not seem to influence goal 
orientation. But they did find that students with learning goals were more likely to put 
effort into their studies and that this had a positive impact on learning and 
achievement, whereas performance goals seemed to have a negative impact on effort 
and achievement. Carmichael and Taylor (2005) found, in a study of 129 students 
(with median age 29) enrolled in a tertiary preparatory mathematics course, that most 
subscribed to an incremental theory of intelligence, and concluded that the issue of 
theory of intelligence is probably not relevant in an adult education context. 

Dweck (1986) also states that a number of previous studies have found that 
girls, and particularly bright girls, display greater tendency towards challenge 
avoidance and debilitation in the face of obstacles. Dweck and Leggett (1988) found 
that girls were more likely than boys to subscribe to an entity theory of intelligence. 
However, in a study of secondary school pupils in England, Ahmavaara and Houston 
(2007) did not find a link between theory of intelligence beliefs and gender. 
Middleton and Spanias (1999) found that boys tend to be more confident in learning 
mathematics than girls and while boys’ confidence is robust to failure, girls’ 
insecurities tend to be resilient in the face of success.  

In this study, our aim is to search for evidence for Dweck’s theory as outlined 
in Figure 1. We will consider the theory of intelligence beliefs, goal orientation and 
confidence of a group of third level students enrolled in mathematics modules. We 
will look for relationships between these variables and study their influence on 
persistence on difficult mathematical tasks. We will also investigate the role of gender 
in Dweck’s model. 

Survey instrument & administration 

The study was conducted in the second semester of the 2007/2008 academic year and 
the participants were all in the first year of their respective programmes at one of 
three third level institutions: namely St Patrick’s College, Drumcondra (BEd or BA 
(Humanities) programme), the National University of Ireland, Maynooth (BA or BA 
(Finance)) and the Institute of Technology, Tralee (Higher Certificate in Engineering 
or BSc). All students were enrolled in mathematics modules taught by the authors. 
The survey was administered during class and students were invited to participate in 
the study. 182 students agreed to participate and of these 73 (43.2%) were male.  

The students completed a 20-minute questionnaire in which they were asked 
to respond to sets of rating scale items addressing Confidence, Theory of Intelligence, 
Goal Orientation (Learning or Performance) and Persistence. The items used a 5-point 
Likert scale (with 1 representing ‘disagree strongly’, 2 representing ‘disagree’, 3 ‘not 
sure’, 4 ‘agree’ and 5 ‘agree strongly’) and were gathered from a number of sources 
but modified to render them relevant to third-level students in Ireland (for full details 
see Breen, et al 2009). The Learning Goal rating-scale items are displayed in figure 2 
for illustrative purposes. Personal information (including gender, age, level of 
mathematics achievement at post-primary school) was also collected from the 
participants.  
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Learning Goals 
1. I work at maths because I like finding new ways of doing things. 
2. I work at maths because I like learning new things. 
3. I work at maths because I like figuring things out. 
4. I work at maths because I want to learn as much as possible. 
5. I work at maths because it is important for me that I understand the ideas. 

Figure 2: Rating-scale items for Learning Goal trait 
 

When undertaking a study of attitudes and opinions, it is important to 
ascertain that the instrument of inquiry used provides valid, reliable and interpretable 
information that addresses the specific question of interest. The validity and reliability 
of the survey instrument used here were determined using Rasch analysis (Bond and 
Fox 2007) by means of the computer software Winsteps (Linacre 2009). Full details 
can be found in Breen et al (2009). Rasch analysis is a means of constructing an 
objective fundamental measurement scale from a set of observations of ordered 
categorical responses (to assessment items or rating-scale items). The scale produced 
is an interval one centred at 0. Following the assumption that useful measurement 
involves the consideration of a single trait or construct at a time, the Rasch model was 
applied to each set of rating-scale items separately. This gave rise to five measures, 
namely, Confidence, Theory of Intelligence (TOI), Learning Goal (LG), Performance 
Goal (PG) and Persistence measures. (The questions on the performance goal scale 
were reverse coded so that a high (or positive) score on this scale indicates a low level 
of performance goal orientation.) For statistically stable measures to be computed 
from the data, it is recommended that at least 10 observations per category of 
reasonably targeted items should be collected (Linacre 2009). Each item used here 
offered 5 categories of response (disagree strongly – agree strongly) and as the 
participants, despite their voluntary nature, were appropriate targets for the instrument 
(as evidenced by Item-Person maps produced by Winsteps (Breen et al 2009)), the 
size of the sample (182) was deemed sufficient. 

Results  

Participants were recategorised on the basis of being assigned positive or negative 
scores on each scale for an initial exploration of the data. Each trait was considered 
individually using these (crude) binary measures before the interactions were explored 
further using chi-squared tests (unless stated otherwise). 

Theory of intelligence 

Items here included “You have to be smart to do well in maths” and “You can 
succeed at anything if you put your mind to it”. A positive score on the Theory of 
Intelligence (TOI) scale indicates that a student subscribes to an incremental view of 
intelligence, while a negative score means that the student has an entity view. More 
extreme scores in either case represent stronger views. Only 27.2% of the participants 
in this study attained a negative score on the scale (indicating an entity view) and their 
views on the nature of intelligence, using this binary measure, were independent of 
gender (p=0.862).  
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Confidence 

Broadly speaking, positive scores on the Confidence scale are awarded to those who 
feel confident in relation to mathematics, while negative scores are awarded to those 
who do not. 66.3% of the respondents here achieved positive scores, and this 
classification of ‘confident’ or ‘not confident’ is independent of gender (p=0.871). 
Confidence items presented to the students included “I learn mathematics quickly” 
and “I have trouble understanding anything with mathematics in it”. 

Goal Orientation 

Learning goal items were shown already in Figure 2. Performance Goal items 
included “I work at maths because it is important to me that the lecturer/tutor thinks I 
do a good job” and “I work at maths because it is important to me to do better than the 
other students”.  

The data here showed very few students reporting a tendency towards 
performance goals, with only 21.3% falling into this category (that is, exhibiting a 
negative score on the scale). On the other hand, 62.7% exhibited a tendency toward 
learning goals, attaining a positive score on the LG scale. Orientation towards 
learning goals is independent of gender (p=0.873 using the binary measure) with 
61.6% of males and 63.5% of females displaying evidence of this orientation. 
However, there is some evidence that males are more inclined towards performance 
goals than females with 26% of males and only 17.7% of females displaying this 
tendency, though this is not statistically significant (p=0.255).  

Dweck’s theory postulates that a student’s goal orientation follows from his 
theory of intelligence. Thus, it may seem reasonable to expect a strong inverse 
relationship between LG and PG. However, the classification of students as having 
positive or negative LG scores is independent of their classification as having positive 
or negative PG scores (p=0.244). 

Persistence 

Students were invited to respond to a number of statements relating to persistence 
including “when presented with a choice of mathematical tasks, my preference is for a 
challenging task” and “when presented with a mathematical task I cannot immediately 
complete, I increase my efforts”. Only 44 students (26%) were awarded a negative 
score on the persistence scale. The allocation of a positive or negative Persistence 
score was independent of gender (p=1.000). 

Relationships between confidence, theory of intelligence, goal orientation and 
persistence  

Dweck (1986) asserts that a student’s level of confidence, combined with his goal 
orientation, determines his behaviour pattern (either adaptive or maladaptive) and the 
level of persistence he will employ on mathematical tasks. The binary measure of 
Persistence created was found not to be independent of the binary measures of 
Confidence (p<0.001), TOI (p<0.001) or LG (p<0.001) but independent of PG 
(p=0.287) using chi-squared tests. Of 125 students with a positive score for 
persistence, 96 (76.8%) are confident, 102 (81.8%) subscribe to an incremental theory 
of intelligence, 94 (75.2%) hold learning goals, and 24 (19.2%) hold performance 
goals. This can be contrasted with the attitudes of the 44 students who are assigned a 
negative persistence score: 16 (36.4%) are confident, 21 (47.7%) subscribe to an 
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incremental theory of intelligence, 12 (27.3%) hold learning goals, and 12 (27.3%) 
hold performance goals. 

In an effort to understand more clearly the interplay between these traits, 
further analysis was carried out using the original interval measures constructed using 
Rasch analysis. Pearson correlations between these measures were computed and are 
displayed in Table 1.   

 
 TOI LG PG Persistence 
Confidence 0.352 (p<0.001) 0.587 (p<0.001) 0.222 (p=0.004) 0.628 (p<0.001) 
TOI 1 0.383 (p<0.001) 0.274 (p<0.001)  0.452 (p<0.001) 
LG  1 0.155 (p=0.044) 0.659 (p<0.001) 
PG   1 0.249 (p=0.001) 

Table 1: Correlations between the measures 
 

Note that the correlation between LG and PG was computed to be 0.155 
(significant at the 0.05 level). Moreover, the correlation between TOI and LG was 
found to be 0.383, while that between TOI and PG was computed as 0.274 (both 
significant at the 0.001 level). Also, the relatively strong correlations of 0.352 
between Confidence and TOI and 0.587 between Confidence and LG indicate a more 
complex situation than that portrayed by Dweck (1986). As seen in Figure 1, Dweck 
suggests that orientation towards a particular type of goal follows from the theory of 
intelligence held by a subject, and that level of confidence contributes to the 
determination of behaviour patterns at a later stage.  

In order to see how students’ persistence on mathematical tasks depends on 
their confidence, theory of intelligence and goal orientation, a regression with the 
Persistence measure as the dependent variable and gender, Confidence, TOI, LG and 
PG measures as independent variables was performed. The regression analysis 
revealed that Confidence (p<0.001), TOI (p=0.005) and LG (p<0.001) were indeed 
significant predictors of Persistence. PG and gender were not. The model had an 
adjusted R2 value of 0.543, which suggests that these three variables account for 
54.3% of the variation in the persistence measure.  

Gender Effects 

Gender seems to play an important role in the relationships under investigation. For 
instance, consideration of male and female students separately shows the correlation 
between TOI and LG to be 0.197 for males (not significant at the 0.05 level) and 
0.504 for females (significant at 0.01 level). Looking at this from another perspective, 
by means of chi-squared tests on the binary (positive/negative) measures of TOI and 
LG, shows them to be independent for males (p=0.696) but not for females (p=0.015). 
However, when the sample is split by gender, positive scores on PG are independent 
of positive scores on TOI for both males and females. 

Using gender to subdivide the sample and performing a regression using the 
interval measures of Persistence, Confidence, TOI, LG and PG with Persistence as the 
dependent variable yields TOI (p=0.003) and Confidence (p<0.001) as significant 
predictors of Persistence for males, with an adjusted R2 value of 0.505. The goal 
orientation variables were not significant predictors of persistence. However, for 
females, the significant predictors are LG (p<0.001), Confidence (p=0.008) and PG 
(p=0.015) but not TOI. The adjusted R2 value of the latter model is 0.644. 
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Conclusions  

The majority of the students surveyed here portrayed themselves as confident, as 
subscribing to an incremental theory of intelligence (in agreement with the findings of 
Carmichael and Taylor 2005), as aspiring to learning goals and as persisting on 
challenging or unfamiliar mathematical tasks, while only a minority reported a 
tendency towards performance goals. We did not see a strong inverse relationship 
between the goal orientation measures. Hannula (2006) comments that learning and 
performance goals should not be seen as mutually exclusive. The binary measures of 
confidence and persistence used failed to provide evidence to support Middleton and 
Spanias’ (1999) comment that boys tend to be more confident than girls or Dweck’s 
(1986) remarks that girls are less persistent than boys in relation to learning 
mathematics. We found no evidence that TOI beliefs are related to gender, mirroring 
Ahmavaara and Houston’s (2007) results. 

When considering the low levels of performance goals exhibited by our 
sample, as with any self-reporting measure, caution should be employed: it may be 
that students do not like to think of themselves in this way and so have not responded 
‘honestly’. Alternatively, it may be that third level students are mature enough not to 
have these kinds of goals. Corroborating evidence is needed. We do have 
corroborating evidence for one of our self-reporting measures however. This survey 
was administered at the same time as a PISA-type test of mathematical literacy. Thus 
we were able to consider students’ persistence on unfamiliar mathematical tasks.  
Preliminary analysis showed that our persistence measure correlated well with the 
evidence provided by the PISA-type test. 

Let’s consider Dweck’s assertion that TOI determines goal orientation. The 
correlations between TOI and LG and TOI and PG are both statistically significant 
but seem to be weaker than we might have expected following Dweck’s theory. This 
finds resonance with Stipek and Gralinski’s (1996) acknowledgement that the 
proposed relationships between TOI and goal orientation are not strong.  

In our study, entity theories of intelligence were not associated with 
performance goals, echoing the findings of a study of adult learners by Dupeyrat and 
Mariné (2005). We did see that female students with incremental views of the TOI 
were likely to have learning goals but the same was not true for males. However 
Blackwell, Trzeniewski and Dweck (2007) found that teenagers who subscribed to an 
incremental theory of intelligence were more likely to exhibit learning goals and also 
employ more effort in studying. 

The second part of Dweck’s theory asserts that persistence is determined by 
confidence and theory of intelligence (through goal orientation). We found that the 
TOI, LG and confidence measures were significant predictors of the persistence 
measure for the group as a whole, providing support for the finding of Dupeyrat and 
Mariné (2005) in relation to the positive impact of learning goals on effort but not in 
relation to a negative impact of performance goals. Some differences were evident 
when gender was taken into account: for the female group TOI was not a significant 
predictor of persistence, while for the male group goal orientation was not a 
significant predictor of persistence. Grant and Dweck (2003) assert that it is only 
when faced with difficult situations that performance goals impact negatively on 
persisitence. In future work, we hope to investigate this phenomenon further by 
examining the behaviour of students on challenging PISA-type questions. 

In summary, it seems that there is evidence for Dweck’s theory in certain 
groups of students but not in others. In particular, it seems to be that gender has a role 
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to play in the relationship between TOI and LG and in how confidence, TOI and goal 
orientation influence persistence.  

Information about students’ previous mathematical achievements was also 
collected and further analysis will be carried out to determine if this affects the 
relationships studied here.  
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Measuring Mathematics Self Efficacy of students at the beginning of their 
Higher Education Studies 

Maria Pampaka and Julian Williams1 

The University of Manchester 

We report on the construction and validation of a self-report ‘Mathematics 
self-efficacy (MSE)’ instrument designed to measure this construct as a 
learning outcome of students entering their Higher Education (HE) 
studies. The sample of 1630 students ranged across different programmes 
with different levels of mathematical demand. The validation of the 
measure was performed using the Rating Scale Rasch model. Results 
include measures and fit statistics illustrating the construct validity, and a 
comparative analysis of sub-groups in the sample (i.e. gender and courses) 
ensuring validity across different groups. The comparison between the 
courses indicated the possibility of a two dimensional structure of the 
construct, which is explored here by performing separated analyses. The 
paper concludes with methodological implications and substantial 
considerations regarding the use of this instrument.  

Keywords: Mathematics self efficacy, Higher Education, Rasch Analysis  

Background 

This paper is concerned with the widely known ‘mathematics problem’ (Smith 2004), 
which sees very few students to be well prepared to continue their studies from 
schools and colleges into mathematically demanding courses in Higher Education 
(HE). These courses include Mathematics, Science, Technology and Engineering 
(hereafter STEM). We particularly report here on the preliminary results of our ESRC 
funded research project “Mathematics learning, identity and educational practice: the 
transition into Higher Education” regarding the developed measures of mathematics 
self-efficacy. 

The self-efficacy construct was initially described and contextualised by 
Bandura who distinguished two cognitive dimensions in this construct, i.e. personal 
self-efficacy and outcome expectancy. Self-efficacy (SE) beliefs “involve peoples’ 
capabilities to organise and execute courses of action required to produce given 
attainments” and perceived self-efficacy “is a judgment of one’s ability to organise 
and execute given types of performances…” (Bandura 1997,  p. 3). Perceived self-
efficacy beliefs have been explored in a wide range of disciplines and settings 
including educational research where they have been investigated in relation to 
progression to further study and career choices and in relation to affective and 
motivational domains and their influence on students’ performance and achievement. 
Most important and relevant to our study are research findings that suggest that 
                                                
1  As author(s) of this paper we recognise the contribution made by the TransMaths team in 
collection of data, design of instruments and project, and discussions involving analyses and 
interpretations of the results: we would also like to acknowledge the support of the ESRC-TLRP award 
RES-139-25-0241, and continuing support from ESRC-TransMaths award RES-062-23-1213.  
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perceived self-efficacy in mathematics is more predictive of students’ choices of 
mathematically related courses in programmes of further study than prior attainment 
or outcome expectations (e.g. Hackett and Betz 1989; Pajares and Miller 1994), hence 
the importance of the construct for the STEM agenda. 

In previous work we have shown how this measure was developed and 
validated for post-compulsory, pre-university students. In particular we presented how 
we measured mathematics self-efficacy with an overall measure and two additional 
measures for two distinct aspects of mathematical task: the pure and more applied. 
Measurement results led to a hypothesis that there may need to be these two sub-
dimensions in the construct of MSE at this level (Pampaka et al. under review; 
Pampaka et al. 2007). Our aim in this paper is to report on the extension of this work 
for use of a revised version of this instrument with HE students. Hence, some 
description of the revisions made to our earlier instruments is presented next.   

Instrumentation and Analysis 

The development of the instrument  

Taking an individual’s self-efficacy to be their belief in their capability to successfully 
complete an identified range of actions in a given field, during our earlier work (see 
above) we devised an instrument that measures students’ self-efficacy in the use (or 
application) of AS level mathematics. 24 items (mathematical tasks) were constructed 
based on seven mathematical competences (Williams et al. 1999) including costing a 
project and handling experimental data graphically. These were complemented with 
six purely symbolic mathematical items (e.g. solving an equation in x). From this 
initial instrument (with 30 items) which was used with students at AS level (pre-
university), the seven most difficult items (i.e. corresponding to post ‘AS study level’) 
were employed for the current version of the instrument for use with students 
beginning their HE studies. Three more advanced items were also added, to make the 
total 10 tasks that constitute the instrument measuring students’ confidence in the 
following mathematical areas: (1) calculating/estimating, (2) using ratio and 
proportion, (3) manipulating algebraic expressions, (4) proofs/proving, (5) problem 
solving, (6) modelling real situations, (7) using basic calculus 
(differentiation/integration), (8) using complex calculus (differential equations / 
multiple integrals), (9) using statistics, and (10) using complex numbers. Items were 
chosen so as to be relevant not only to students studying for Mathematics programmes 
but for a wider range of subjects, hence the ‘use of maths’ elements. 

As usual in SE studies (e.g. Zimmerman and Martinez-Pons 1990; Hackett and 
Betz 1989), items were presented in the form of a 4-point Likert type scale where 
students were asked to choose the level of their confidence in solving them (but it was 
stressed they were not to solve the problems).  

Analytical Considerations   

Validation refers to the accumulation of evidence to support validity arguments. Our 
psychometric analysis for this purpose will be conducted within the Rasch 
measurement framework and therefore we follow the guidelines summarised by 
Wolfe and Smith Jr,  (2007) based on Messick’s (1989) validity ‘definitions’. The 
Rasch rating scale is the most appropriate for scaling problems with Likert type items 
like ours. Analysis was performed with the FACETS software  (Linacre 2003; Bond 
and Fox 2001) and the following statistics will guide our exploration for this paper 
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under our validation framework: (a) Item fit statistics to check fulfilment of the 
unidimensionality assumption and ensure construct validity, (b) Category Statistics to 
justify communication validity (Lopez 1996), (c) Person – item maps and the item 
difficulty hierarchy to provide evidence for substantive, content and external validity, 
and (d) Differential Item Functioning (DIF) to suggest gender and course group 
differentiation of the constructed measures.    

 Results  

Sample description 

The preliminary results presented in this paper come from the analysis of the first data 
point out of three in our project. This happened before, and at the beginning of 
academic year 2008-2009, just when students were in their induction phase to 
university. The sample includes 1630 students, mainly coming from five UK HE 
institutions, split  by gender and course as shown in Table 1: 
Table 1: Sample Description (by gender and course) 

 Gender   
Course Classification Female Male Total (%) 
Mathematically Demanding 311 731 1042 (64%) 
Non Mathematically Demanding 340 248 588 (36%) 
Total (%) 651(40%) 979(60%) 1630 

It should be noted that under the “Mathematically demanding’ course 
classification there were students from Mathematic courses (including combined 
degrees), Electrical and Electronic, and Mechanical Engineering courses, Physics and 
Chemistry. The Non Mathematically demanding courses include Medicine and some 
educationally-related degrees.  

Construct Validity: Checking for Unidensionality 

In the Rasch context fit statistics indicate how accurately the data fit the model. Fit 
statistics are local indicators of the degree to which the data is cooperating with the 
model’s requirements. Inconsistent data (e.g. misfit items or persons, i.e. with infit 
and outfit meansquare departing from the ideal of 1) may become a source of further 
inquiry.  Fit statistics may also flag items to which responses are overly predictable 
(overfits), an indication that, in some way, they are over-dependent on the other items 
and might be the first choices for deletion (Wright 1994). For the purposes of this 
paper we take any number above 1.2 (of infit MnSq) as possible cause of concern, 
whereas infit values below 1 are considered as overfits and are not discussed.  The 
results for our MSE measure are shown in Table 2 and indicate acceptable fit of 
almost all the items suggesting that they could constitute a scale, i.e. they measure 
what we call ‘students Mathematics Self efficacy at University’ (MSE@Uni). The 
only exception to this is the ‘statistics’ item which presents an Infit meansquare of 1.3 
(highlighted) which indicates a possible mis-behaviour of this area of mathematics 
under our constructed measure.  Further exploration of this aspect of mathematics can 
be justified with interview data from students; however this goes beyond the scope of 
this paper. We will seek however, more psychometric justification and explanation of 
this misfit through further analysis (i.e. DIF).  
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Table 2: Measures and fit statistics for the items of the scale 
-------------------------------------------------------------------------------------------------- 
| Obsvd   Obsvd  Obsvd  Fair-M|        Model | Infit      Outfit   |       |                     | 
| Score   Count Average Avrage|Measure  S.E. |MnSq ZStd  MnSq ZStd | PtBis | Nu Items            | 
-------------------------------------------------------------------------------------------------- 
|  3182    1328     2.4   2.41|   1.28   .04 | 1.0   0    1.0   0  |   .53 |  1 modeling         | 
|  4225    1331     3.2   3.25|   -.56   .05 | 0.9  -3    0.9  -3  |   .56 |  2 calculating      | 
|  4055    1323     3.1   3.13|   -.26   .04 | 1.0  -1    1.0  -1  |   .54 |  3 ratio_proportion | 
|  4568    1326     3.4   3.54|  -1.39   .05 | 1.0   0    0.9  -2  |   .69 |  4 algebra          | 
|  3770    1320     2.9   2.91|    .25   .04 | 1.0   0    1.0   0  |   .65 |  5 proof            | 
|  3691    1318     2.8   2.85|    .38   .04 | 0.9  -2    0.9  -2  |   .55 |  6 problem_solving  | 
|  4239    1309     3.2   3.31|   -.74   .05 | 1.0   1    0.9  -1  |   .71 |  7 Basic_calculus   | 
|  3633    1313     2.8   2.82|    .46   .04 | 0.9  -2    0.9  -2  |   .65 |  8 complex_calc     | 
|  3683    1309     2.8   2.86|    .36   .04 | 1.3   7    1.4   8  |   .39 |  9 statistics       | 
|  3764    1308     2.9   2.93|    .20   .04 | 1.2   4    1.1   3  |   .63 | 10 complex_num      | 
-------------------------------------------------------------------------------------------------- 
|  3881.0  1318.5   2.9   3.00|    .00   .04 | 1.0   0.3  1.0  -0.1|   .59 | Mean (Count: 10)    | 
|   374.2     8.0   0.3   0.30|    .71   .00 | 0.1   3.2  0.1   3.3|   .09 | S.D.                | 
-------------------------------------------------------------------------------------------------- 
RMSE (Model)   .04  Adj S.D.   .71  Separation 16.15  Reliability 1.00 
Fixed (all same) chi-square: 2476.3  d.f.: 9  significance: .00 
Random (normal) chi-square: 9.0  d.f.: 8  significance: .34 
-------------------------------------------------------------------------------------------------- 

Rating scales and their response formats serve as tools with which the 
researcher communicates with the respondents. Lopez (1996) defines as 
‘communication validity’ the extent to which the rating scale’s categories perform as 
intended. Thus, category statistics are also examined for the appropriateness of the 
Likert scale used and its interpretation by the respondents, with the aid of Rasch 
analysis which provides the means for these checks (see Table 3). 
Table 3: Category statistics for MSE@Uni Measure 
-------------------------------------------------------------------------------------------------- 
|      DATA            |  QUALITY CONTROL  |   STEP      |  EXPECTATION  |  MOST  |THURSTONE| Cat| 
| Category Counts  Cum.| Avge  Exp.  OUTFIT|CALIBRATIONS |  Measure at   |PROBABLE|THRESHOLD|PEAK| 
|Score   Used   %    % | Meas  Meas   MnSq |Measure  S.E.|Category  -0.5 |  from  |    at   |Prob| 
-------------------------------------------------------------------------------------------------- 
|  1      954   7%   7%| -1.31  -1.41  1.1 |             |( -2.94)       |   low  |   low   |100%| 
|  2     2634  20%  27%|  -.04   -.08  1.0 | -1.71    .04|  -1.06   -2.11|  -1.71 |  -1.90  | 50%| 
|  3     5800  44%  71%|   .92   1.01   .9 |  -.32    .02|    .92    -.13|   -.32 |   -.22  | 61%| 
|  4     3797  29% 100%|  2.36   2.28   .9 |  2.04    .02|(  3.18)   2.25|   2.04 |   2.11  |100%| 
------------------------------------------------------------(Mean)---------(Modal)--(Median)------ 

The most often used indices for this check are the average measure and the 
threshold (or step calibration). The average measure is approximately the average 
ability of the respondents observed in a particular category, averaged across all 
occurrences of the students in the category, whereas the threshold is the location 
parameter of the boundary on the continuum between category k and category k-1 of a 
scale (Linacre, 2002). A well functioning scale should present ordered average 
measures, and ordered step calibrations, with acceptable fit statistics, as happens with 
our case.  

So far results indicate a rather healthy measure of MSE@Uni. But what about 
its validity across different groups of students? 

What does DIF analysis indicate? Validity across different groups 

When a variable is used with different groups of persons, it is essential that the 
identity of the variable be maintained from group to group.  Only if the item 
calibrations are invariant from group to group can meaningful comparisons of person 
measures be made (Wright and Masters 1982). The groups we are interested to check 
here are male and female students and more importantly students in various HE 
courses classified according to their mathematical demand. A statistical way to inform 
this process is to check for Differential Item Functioning (DIF). DIF describes a 
serious threat to the validity of items and tests used to measure an aptitude, ability or 
proficiency of members of different groups. DIF measurement may be used to reduce 
this source of test invalidity and allows researchers to concentrate on the other 
explanations for group differences in test scores (Thissen, Steinberg, and Wainer 
1993).   
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There are different methods to check for DIF. In our case a t-test on the two 
estimates of difficulty parameters based on the two groups of students was performed 
(see Figure 1, with the lines indicating the 95% confidence intervals in item 
estimates). The points that are outside the confidence intervals in Figure 1 denote the 
items with high DIF when comparing students of mathematically demanding subjects 
with the rest of the students1. 

 
 
Figure 1: Comparison of item estimates for the two student groups 
 

In this case, it appears that only two items are within the acceptable 
confidence intervals (these are advanced calculus and proof).  Figure 1 indicates a 
‘bad’ measure in psychometric terms, with the items on the top favoring the students 
of mathematically demanding subjects and those on the bottom the rest of the 
students. However, this picture should be given a closer and more careful insight, in 
respect to the underlying construct it measures (i.e. students’ self efficacy) and its 
implications for mathematics education.  

The 10 items of MSE@Uni seem to be clustering into two groups based on 
DIF results. The circled items denote areas of mathematics which form part of the 
AS/A2 mathematics syllabus; hence students who (successfully) completed this 
course will be at an advantage, in regards to their self efficacy. In contrast, the other 
items denote more applied mathematical areas. Hence the results point to the 
possibility of a second underlying dimension in the construct of MSE@Uni.  

Two possible dimensions: Investigation of Subscales of MSE@Uni 

In order to further explore the possibility of a two dimensional structure of the 
MSE@Uni measure, the two groups of items defined above based on the results of 
DIF analysis are analysed separately to check whether they could  define two sub-
measures. The results of this analysis are shown in Table 4 and indicate two measures 
                                                
1  Similar analysis for gender indicated smaller differences: the Statistics item is favoring female students, 
whereas modeling and ratio/proportion items are favoring male students. Due to limitations of the length of this 
paper, however, focus will be placed on the course classification.   

 



Joubert, M. and Andrews, P. (Eds.) Proceedings of the British Congress for Mathematics Education April 2010 

164 

of MSE with acceptable fit statistics and good reliability and separation indices. 
Category statistics are also acceptable but omitted from this presentation. 
 
Table 4: Measures and fit statistics for the items of the two subscales of  MSE@Uni construct  
(AS-related topics on the top, and Applied MSE at the bottom) 
-------------------------------------------------------------------------------------------------- 
| Obsvd   Obsvd  Obsvd  Fair-M|        Model | Infit      Outfit   |       |                     | 
| Score   Count Average Avrage|Measure  S.E. |MnSq ZStd  MnSq ZStd | PtBis | N Items             | 
-------------------------------------------------------------------------------------------------- 
|  3206    1192     2.7   2.71|    .93   .05 | 1.0   0    1.1   1  |   .65 | 4 complex_calc      | 
|  3339    1198     2.8   2.82|    .65   .05 | 1.0   1    1.0   1  |   .67 | 2 proof             | 
|  3337    1187     2.8   2.84|    .58   .05 | 1.2   4    1.2   3  |   .65 | 5 complex_num       | 
|  3812    1188     3.2   3.29|   -.65   .05 | 0.9  -3    0.8  -4  |   .76 | 3 Basic_calculus    | 
|  4127    1201     3.4   3.56|  -1.51   .06 | 0.9  -1    0.8  -2  |   .72 | 1 algebra           | 
-------------------------------------------------------------------------------------------------- 
|  3564.2  1193.2   3.0   3.05|    .00   .05 | 1.0   0.2  1.0  -0.1|   .69 | Mean (Count: 5)     | 
|   348.9     5.5   0.3   0.33|    .93   .00 | 0.1   2.8  0.1   3.1|   .04 | S.D.                | 
-------------------------------------------------------------------------------------------------- 
RMSE (Model)   .05  Adj S.D.   .93  Separation 17.84  Reliability 1.00 
Fixed (all same) chi-square: 1457.7  d.f.: 4  significance: .00 
Random (normal) chi-square: 4.0  d.f.: 3  significance: .26 
-------------------------------------------------------------------------------------------------- 
| Obsvd   Obsvd  Obsvd  Fair-M|        Model | Infit      Outfit   |       |                     | 
| Score   Count Average Avrage|Measure  S.E. |MnSq ZStd  MnSq ZStd | PtBis | N Items             | 
-------------------------------------------------------------------------------------------------- 
|  3137    1313     2.4   2.44|   1.35   .05 | 1.1   2    1.1   2  |   .46 | 1 model             | 
|  4180    1316     3.2   3.20|  -1.05   .05 | 0.8  -3    0.8  -4  |   .57 | 2 calculating       | 
|  4011    1309     3.1   3.09|   -.65   .05 | 1.0  -1    0.9  -1  |   .55 | 3 ratio_proportion  | 
|  3646    1303     2.8   2.85|    .19   .05 | 0.9  -2    0.9  -2  |   .54 | 4 problem_solving   | 
|  3638    1294     2.8   2.86|    .16   .05 | 1.2   4    1.2   4  |   .44 | 5 statistics        | 
-------------------------------------------------------------------------------------------------- 
|  3722.4  1307.0   2.8   2.89|    .00   .05 | 1.0  -0.1  1.0  -0.2|   .51 | Mean (Count: 5)     | 
|   360.1     7.8   0.3   0.26|    .83   .00 | 0.1   3.2  0.1   3.2|   .05 | S.D.                | 
-------------------------------------------------------------------------------------------------- 
RMSE (Model)   .05  Adj S.D.   .83  Separation 16.82  Reliability 1.00 
Fixed (all same) chi-square: 1466.8  d.f.: 4  significance: .00 
Random (normal) chi-square: 4.0  d.f.: 3  significance: .26 

 
The results of DIF analysis of these two new measures are also shown in 

Figure 2. It is obvious that the differences between the two groups of students are now 
smaller; it should be noted that none of the DIF values is bigger than 0.5 logits, and 
hence they could be considered as a smaller problem (Linacre 1994) which may be 
ignored in some analyses. 
 

  
2a. AS-related MSE@Uni 2b. Applied MSE@Uni 
Figure 2: DIF Analysis for the two subscales of MSE@Uni 
 

Figure 3 finally shows the three resulting measurement scales (MSE@Uni and 
the two subscales, namely MSE@Uni-AS_areas and MSE@Uni-Applied_areas). The 
right side of each scale shows the distribution of students (the higher the student’s 
position the more self-efficacious they are); Numbers under the ‘item’ column 
indicate the item and its location on the same logit scale (For MSE@Uni these 
numbers are defined in Table 2). More difficult items are located higher on the scale. 
Observation of the scales, based on the spread of items and students can justify the 
split into the two subscales:  It appears that items for the MSE@Uni are centred in a 
small area and do not cover the whole ability range of students, hence they do not 
discriminate enough for this group of students.   
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Figure 3: The Mathematics Self Efficacy Scales 

Discussion - Conclusions 

This paper presented some preliminary psychometric results for a constructed 
measure to capture students’ mathematical self efficacy, from our research on 
students’ transition to University. In sum we presented how a seemingly 
unidimensional measure of MSE was broken down into two sub-measures which may 
be more appropriate and productive for research in mathematics education. Two 
points should be emphasised here: 

The first one is methodological and adds to current discussion about validation 
of measures. Our results indicate that even when a measure initially seems robust in 
regards to fit statistics and overall measures of reliability, care should be taken to 
consider how it can be used with different sub groups of the population. In our case 
DIF analysis flagged a possible extra dimension in our measure. This possibility has 
to be examined further by employing multidimensional models (Briggs and Wilson 
2003).  

The second remark is more substantive and regards the use of such measures 
in further statistical modeling. Given our psychometric results so far, it may be the 
case that some times two measures are more useful than one, to capture the desired 
relationships and consequently better inform research in mathematics education.  
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Comparison at Two Levels of the Content Treatment of ‘Early Algebra’ in the 
Intended Curricula in South Africa and England 

Nicky Roberts  

University of Cambridge 

This paper compares the treatment of algebra content in the intended 
curriculum of the early grades1 in two countries: England and South 
Africa. Two levels of analysis are conducted. The first examines the 
content structure of each curriculum; and the second compares and 
contrasts the detailed ‘learning objectives’ in England to the ‘assessment 
standards’ in South Africa. The comparison reveals that a curriculum may 
include algebra by name, but may not deal with it in much substance (as 
in South Africa) and, a curriculum may include algebra in some 
substance, while not mentioning it by name (as in England).  

Keywords: Early Algebra, Curricular Comparison, South Africa, England 

Introduction 

In the last few decades, there has been substantial mathematics educational research 
into precisely what is meant by ‘early algebra’, and a growing sophistication of its 
interpretation and use (see, for example: Davis 1985, Bodanskii 1991, Sasman et al 
1998, Kaput et al. 1999, Bills et al. 2003, Amerom 2003, and Warren 2004). This has 
emerged from the identification of a ‘cognitive gap’ in the transition from arithmetic 
to algebra (Herscovics et al. 1994), which has resulted in research focusing on how 
the teaching of arithmetic at primary school level may better inculcate algebraic 
thinking. There seems, however, to be less published work on how this research has 
been interpreted and is manifest in particular curriculum frameworks. It therefore 
seemed opportune to compare particular intended curricula and contrast their 
treatment of ‘early algebra’, in order to garner how the research on this topic is being 
communicated to mathematics teachers in different national contexts. This paper 
limits its scope to only two countries: England and South Africa.2 It is hoped that it 
provides sufficient detail to be of particular interest to mathematics educators from 
these countries, and simultaneously provides a basis for further comparison for the 
wider international mathematics education community interested in ‘early algebra’ or 
‘curriculum development’. 

This paper begins by presenting Kaput’s definition of ‘early algebra’, and 
explains how this is adapted for the purpose of this paper (2007). This is followed by 
an analysis of the curriculum policy documents in the two countries: the Revised 
National Curriculum Statement for Mathematics (RNCS) (Department of Education, 
DOE 2002) in South Africa, and the Primary Framework for Mathematics 
(Department for Children, Schools and Families, DCSF 2009d) in England. These 
                                                
1 For the purpose of this paper, ‘early grades’ is defined to be the first four years of compulsory 
primary education. In England this refers to Reception and Years 1 to 3, which are termed ‘Key Stage 
One’. In South Africa this refers to Grade R and Grades 1 to 3, which are termed ‘Foundation Phase’. 
2 These countries were selected as they are the national mathematics education environments with 
which the author is most familiar having conducted research and taught mathematics in both countries.  
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intended curricula are analysed at two levels: the ‘macro level’ which examines the 
content structure of each curriculum; and the ‘micro level’ which compares and 
contrasts the detailed ‘learning objectives’ in England to the ‘assessment standards’ in 
South Africa. A third ‘meta level’ of the published research on early algebra emerging 
from each country is also of interest, as this informs the other two levels. However 
this paper is limited to the micro and macro levels, as these are the standard national 
documents used to communicate the intended curricula to the majority of teachers in 
the early grades.  

Analysing Early Algebra in Intended Primary Mathematics Curricula 

Kaput provides a detailed framework for considering the various elements of algebra 
by referring to two core aspects and three strands, as represented in Figure 1.  
Figure 1: 1 Kaput’s definition of ‘early algebra’ 

 
 
The two core aspects are evident in Kaput’s explanation that algebraic 

reasoning is taken to be “symbolisation activities that serve purposive generalisation” 
(or using symbols to generalise), and simultaneously to be “reasoning with 
symbolised generalisations” (or acting on symbols, following rules) (Kaput et al. 
2007). Kaput explains that it is generally assumed in mathematics curricula that Core 
Aspect A usually precedes Corey Aspect B. The first two strands in this categorisation 
of early algebra consider the two types of generalising that are at the heart of 
algebraic thinking: generalising arithmetic; and generalising towards the idea of 
function. The third strand refers to modelling processes where situations are 
understood and interpreted using algebraic reasoning and language. Kaput explains 
that there are overlaps between the strands and provides useful illustrative examples 
relevant to the early grades for each strand, which are summarised in Figure 1.  

For the purpose of this paper, ‘early algebra’ is taken to mean generalising in 
the early grades of primary school, which is as expressed in Strand 1 and Strand 2 of 
                                                
1 Source: Created be author, drawing on explanations provided by Kaput 2007. 
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Core Aspect A in Kaput’s definition.1 This generalising has two main manifestations: 
generalising from arithmetic and quantitative reasoning; and generalising towards the 
idea of a function. As such, one would expect that a primary mathematics curriculum 
which addresses ‘early algebra’ should include at least three elements. The first 
element is generalising arithmetic as the exploration of properties of numbers and 
operations. The second element is generalising about particular number properties and 
relationships. This is distinct from the first element, as it relates to properties and 
relationships for particular numbers and not to properties of numbers and operations 
in general. It is important to realise that arithmetic approaches which encourage 
‘partitioning’ or ‘breaking down’ and ‘building up’ numbers draw on these properties 
of particular numbers and operations. The third element is generalising towards the 
idea of a function which includes recognising regularity in elementary patterns, ideas 
of change including linearity, and representation through tables, graphs and ‘function 
machines’.  

Comparison of Early Algebra in the Intended Curricula of England and South 
Africa 

Comparison at the Macro Level: Content Structure of Each Curriculum 

In both South Africa and England the mathematics content is expressed in the content 
focus areas and related assessment criteria in the mathematics curricula. The South 
African mathematics curriculum statement is structured using the following five 
learning outcomes: Numbers, Operations and Relationships (LO1); Patterns, 
Functions and Algebra (LO2); Space and Shape (Geometry) (LO3); Measurement 
(LO4); and Data Handling (LO5). For England the mathematics learning objectives 
are organised in relation to seven ‘strands of learning’ which give a broad overview of 
mathematics in the primary curriculum. The seven strands of learning in England are 
Using and Applying Mathematics (Ma1), Counting and Understanding Number 
(Ma2), Knowing and Using Number Facts (Ma3), Calculating (Ma4), Understanding 
Shape (Ma5), Measuring (Ma6), and Handling Data (Ma7).2 Like South Africa, each 
learning strand in England is used to provide the structure for specifying the learning 
objectives for each year in the primary school.  

In South Africa, learning outcomes one and two are most relevant to early 
algebra.  Algebra could find expression in a variety of contexts including learning 
outcomes three, four and five, “however the core of the development of learner’s 
knowledge and understanding of algebra will, by the nature of algebra, take place 
with the first two learning outcomes” (Vermeulen 2007, 21).  

For ‘numbers, operations and relationships’ (LO1) learners are expected to 
“recognise, describe and represent numbers and their relationships, and to count, 
estimate, calculate and check with competence and confidence in solving problems” 
(DOE 2002). Although this does not explicitly mention algebra, this learning outcome 
could be expected to include statements that relate to algebra. For example the 
                                                
1  The motivation for this is twofold: Strand 3 and Core Aspect B tend to emerge later in the primary 
curriculum as preparation for algebra in secondary schools and are considered by the author to be less 
relevant to the early grades; generalising is the core idea of early algebra as relevant to the early grades 
in primary mathematics curricula. There are other definitions of early algebra but in-depth discussion 
of these is beyond the scope of this paper.  
2 Ma5 in England maps quite neatly to LO3 in South Africa. Similarly Ma6 maps to LO4 , and Ma7 to 
LO5. Ma1, Ma2, Ma3 and Ma4 in England can be broadly mapped to LO1 and LO2 in South Africa. 
Ma1 is a cross cutting objective, of which there is no equivalent LO in South Africa.  
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‘Learning Outcome Focus’ includes that this learning outcome “develops the learners 
understanding of how different numbers relate to one another; …how different 
numbers can be thought about and represented in various ways; and the effect of 
operating with numbers” (DOE 2002). This clearly shows that there is explicit 
intention to allow learners to explore the structural nature of arithmetic. Numbers are 
experienced in how they relate to each other, and can be thought about and 
represented in various ways, allowing for the exploration of the equivalence of the 
equal sign. With specific reference to the ‘Foundation Phase Focus’, the curriculum 
statement specifies that  

In this phase the number concept of the learner is developed through working with 
physical objects in order to count collections of objects, partition and combine 
quantities, skip count in various ways, solve contextual (word) problems and 
build up and break down numbers. (emphasis added) (DOE 2002) 

Again, this appears consistent with the intention of early algebra to allow 
arithmetic to be seen in general terms: ‘partitioning and combining quantities’ or 
‘building up and breaking down numbers’ promises the potential of exploring 
equivalence of numeric expressions; and the use of skip counting hints at the 
introduction of multiplication as repeated addition, and to the beginning of the 
concept of number sequences and the concept of a function.  

‘Patterns, functions and algebra’ (LO2) requires learners to “recognise, 
describe and represent patterns and relationships, as well as to solve problems using 
algebraic language and skills” (DOE 2002). This ‘Learning Outcome Focus’ provides 
a detailed indication of the South African interpretation of what is meant by algebra, 
stating that algebra “can be seen as generalised arithmetic, and can be extended to the 
study of functions or relationships between variables” (DOE 2002). The description of 
the ‘Foundation Phase Focus’ for this learning outcome is that this learning outcome 
is intended to “lay the foundation for algebra in the Intermediate and Senior Phases” 
(DOE 2002). This reveals that although algebra is included in the learning outcome 
description, it does not, in fact, appear to be a major focus at the Foundation Phase. 

In England, like in South Africa, early algebra may be found relevant to all of 
the learning objectives. However the core treatment of early algebra would be 
expected to be evident in learning objectives Ma1 to Ma4. The curriculum in England 
does not describe each of its learning objectives in any more detail nor in the same 
systematic way as the South African curriculum. A selection of ‘Guidance Papers’ 
accompany the Primary Framework have some relevance to the mathematics learning 
objectives. However, the term ‘algebra’ is not explicitly mentioned in any of the 
relevant Guidance Papers.1 Nevertheless the concept of early algebra as generalising 
is evident in all three of these papers. To illustrate this implicit treatment of early 
algebra: the Guidance Paper on Mathematics and the Primary Curriculum states that 
“mathematics describes patterns, properties and general concepts” as one of its 
descriptors of what mathematics is, elaborating that “children’s ability to extract the 
essential properties and generalise from particular cases is a key skill in mathematics” 
(DCSF 2009b). This is consistent with the notion of early algebra as generalised 
arithmetic. The Guidance Paper on Calculating also describes that children are 
expected to recognise how operations relate to one another and how the rules and laws 
of arithmetic are to be used and applied (DCSF 2009a). The Guidance Paper on 
Using and Applying Mathematics elaborates on five theme areas all of which have 
                                                
1 See the Guidance Paper on ‘Mathematics and Primary Curriculum’ on ‘Calculation’, or on ‘Using and 
Applying Mathematics’. 
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relevance to early algebra. The following example of an extract from the reasoning 
theme illustrates this: 

Children need to be taught how to record their thinking and reasoning in 
mathematics as they describe, replicate and create patterns and explore properties 
and relationships. (DCSF 2009c) 

Describing, replicating, and creating patterns and exploring properties and 
relationships are central ideas in generalising towards the idea of a function. So, 
although the electronic curriculum framework of England is rather fragmented and its 
links to multiple assessment frameworks seem inordinately complex, it does include 
two notions of early algebra as generalising, but views this as integrated into the 
treatment of number work more broadly.  

In sum, in comparing and contrasting the curricula of the two countries at this 
macro level, the South African curriculum clearly has a more detailed and explicit 
focus on early algebra than the England curriculum does. However, when examining 
the underlying documentation provided in the Guidance Papers it is clear that 
England includes reference to the ideas underpinning early algebra as generalising, 
although this connection is not made explicit in the curriculum documents. 

Comparison at the Micro Level: ‘Learning Objectives’ in England and ‘Assessment 
Standards’ in South Africa 

At the micro level there is considerable similarity between the two curricula. Table 1 
presents the similarities in the early grades, organised using the three elements that a 
curriculum which addresses early algebra should include (as outlined above).1 
Table 1: Similarities in Assessment Standards in South Africa (SA) to Learning Objectives in England 
(relating to early algebra, in the early grades) 

 

Table 1 shows that there are similarities in the two curricula in relation to all 
three aspects of early algebra as generalising. There are no assessment standards in 
the South African curriculum which are relevant to early algebra, which do not find 
expression, in an equivalent form, in the English curriculum. However, the curriculum 
in England does include several learning objectives that are relevant to early algebra, 
which are absent from the South African curriculum, as presented in Table 2.  
Table 2: Learning Objectives in England where there are no equivalent Assessment Standards in SA 

Aspect	
  of	
  Early	
  
Algebra	
  

Example	
   ENGLAND	
   SOUTH	
  AFRICA	
  

Generalising	
  
arithmetic	
  as	
  the	
  
exploration	
  of	
  
properties	
  and	
  
number	
  
operations	
  

Commutative,	
  
associative,	
  and	
  
distributive	
  
properties	
  

Ma4	
  Year	
  1:	
  Relate	
  addition	
  to	
  counting	
  
on;	
  recognise	
  that	
  addition	
  can	
  be	
  done	
  
in	
  any	
  order	
  (emphasis	
  added)	
  	
  

Does	
  not	
  make	
  commutative	
  property	
  
of	
  addition	
  explicit.	
  	
  

	
  

	
   Inverse	
  
relationships	
  

Ma3	
  Year	
  2:	
  Understand	
  that	
  halving	
  is	
  
the	
  inverse	
  of	
  doubling	
  	
  

Ma3	
  Year	
  3:	
  Use	
  knowledge	
  of	
  number	
  
operations	
  and	
  corresponding	
  inverses,	
  
including	
  doubling	
  and	
  halving	
  to	
  

Does	
  not	
  make	
  explicit	
  that	
  halving	
  is	
  
the	
  inverse	
  of	
  doubling	
  	
  

Does	
  not	
  make	
  explicit	
  use	
  of	
  inverse	
  
relationships	
  for	
  calculations	
  	
  

                                                
1 See the last paragraph of the section on Analysing ‘Early Algebra’ in the Primary Mathematics 
Curricula 
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Aspect	
  of	
  Early	
  
Algebra	
  

Example	
   ENGLAND	
   SOUTH	
  AFRICA	
  

estimate	
  and	
  check	
  calculations.	
  

Ma4	
  Year	
  2:	
  Understand	
  that	
  
subtraction	
  is	
  the	
  inverse	
  of	
  addition	
  
and	
  vice	
  versa;	
  use	
  this	
  to	
  derive	
  and	
  
record	
  related	
  addition	
  and	
  subtraction	
  
number	
  sentences.	
  

	
  

Does	
  not	
  make	
  explicit	
  that	
  addition	
  is	
  
inverse	
  of	
  subtraction	
  	
  

	
  

	
   Properties	
  of	
  
multiples,	
  
including	
  odd	
  
and	
  even	
  
numbers	
  

Ma2	
  Year	
  2:	
  Recognise	
  odd	
  and	
  even	
  
numbers	
  	
  

Ma3	
  Year	
  2:	
  Recognise	
  multiples	
  of	
  2,5	
  
and	
  10	
  	
  

Does	
  not	
  consider	
  properties	
  of	
  
multiples	
  (for	
  odd	
  and	
  even	
  numbers,	
  
or	
  other	
  multiples)	
  	
  

	
  

Generalising	
  
about	
  particular	
  
number	
  
properties	
  and	
  
relationship	
  	
  

Using	
  
equivalence	
  of	
  
‘=’	
  sign	
  to	
  find	
  
an	
  unknown	
  in	
  
an	
  equation	
  

Ma4	
  Year	
  2:	
  Calculate	
  the	
  value	
  of	
  an	
  
unknown	
  in	
  a	
  number	
  sentence	
  (e.g.	
  
�+2=6;	
  30-­‐�=24)	
  	
  

	
  

Does	
  not	
  make	
  explicit	
  the	
  equivalence	
  
of	
  the	
  equal	
  sign,	
  and	
  its	
  use	
  beyond	
  an	
  
instruction	
  to	
  compute	
  	
  

 
Table 2 demonstrates that the English curriculum makes the commutative 

property of addition explicit, while the South African curriculum does not. The 
English curriculum introduces the idea of an inverse and is explicit about both 
doubling and halving and addition and subtraction being inverse relationships. Also 
learners in England are expected to find an unknown in a simple linear equation. This 
shows that at the micro level of learning objectives and assessment standards, the 
English curriculum addresses early algebra concepts in more detail.  

The South African curriculum includes examples of algebra as generalised 
arithmetic, but does not make this explicit through identifying general properties of 
numbers and relationships in arithmetic. Although doubling and halving are 
introduced, this is not explicitly taught as an example of an inverse relationship. There 
is no exploration of odd and even numbers, or properties of other multiples. Although 
multiplication is introduced as repeated addition, this is not done to explore the 
underlying general properties of association and commutativity.  

Conclusion 

This curriculum comparison focuses on how a particular conceptualisation of early 
algebra (an adaptation of Kaput’s definition) is manifest in the intended curricula in 
the early grades in two countries. The analysis reveals that, the South African 
intended curriculum makes clear commitments to the teaching and learning of 
algebra, but it does not deal with it in any substance, and that, in contrast, the English 
intended curriculum includes more algebra content, although does not address ‘early 
algebra’ explicitly. 

At the macro level of analysis, the content structure of the South African 
curriculum includes an explicit focus on early algebra from the first year of primary 
school as one of the five learning outcomes focuses on ‘patterns, functions and 
algebra’. However at the first phase of primary school in South Africa the treatment 
of algebra is primarily a stepping stone towards algebra for subsequent phases in 
primary school. There appears to have been little reflection and exploration of how 
early algebra may manifest in the Foundation Phase. There is little focus on 
generalising, as having intrinsic mathematical value for this age group. England in 
contrast, does not include a specific content focus on early algebra in its primary 
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mathematics curriculum. However, some of its Guideline Papers refer to the ideas 
underpinning early algebra as generalised arithmetic, even though this connection is 
not made explicit. Making this connection explicit and enabling teachers to see how 
the curriculum in England supports a growing body of research work around the 
world on the topic of early algebra would be useful. 

At the micro level of analysis, the level of learning objectives and assessment 
standards, clearly shows that the English curriculum addresses early algebra in more 
detail.  While the South African curriculum includes some examples which can be 
recognised as having the potential for exploring generalised arithmetic, it does not 
expect the underlying algebraic reasoning to be explicitly recognised. Several 
examples of generalised arithmetic relevant for this age group are included in the 
curriculum in England but are absent from the South African curriculum. 

This paper is not intended to advocate for a change in the curriculum 
framework in South Africa. Nor is it intended to advocate for yet another assessment 
framework in England. Rather, this paper strives to highlight the need for more 
detailed guidance for South African teachers on the treatment of early algebra, and the 
need for England to simplify and streamline the supporting documentation for its 
intended curriculum, which should make the treatment of early algebra explicit. It is 
hoped that this paper allows for reflection on how intended curricular may be used to 
better communicate research in early algebra, at an appropriate level of detail, to 
teachers in the early grades. 
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Abstract: This paper reports on some of the social and emotional 
complexities young people negotiate, consciously or otherwise, when 
applying to study at university and presents reasons for why good 
candidates for mathematics degrees may not opt to study mathematics. 
The research comes from one strand of the UPMAP project which is 
seeking to understand profiles of participation in mathematics and 
physics. Data analysed come from narrative-style interviews which were 
conducted with first-year undergraduates who had A level mathematics 
and who were studying a range of subjects at university.   

Keywords: higher education, affect, participation 

Introduction  

This paper reports on one of the three ‘Strands’ of the ‘Understanding Participation in 
Mathematics and Physics’ project (UPMAP) that is funded by the ESRC and other 
providers as part of their 2007 science and mathematics education call. The funders’ 
intention was to commission research that could provide evidence for policy 
proposals that would encourage a technically proficient new generation given that 
post-16 participation rates in mathematics and physics were not considered sufficient 
from an economic-modelling perspective (e.g. HM Treasury, 2004) to sustain desired 
economic growth, (ESRC webref). In 2008 the Higher Education Funding Council for 
England injected a £350 million rescue plan to attempt to counteract the decline in the 
number of students taking science and mathematics. In recent years there has been a 
growing concern in the declining number of school-leavers continuing with 
mathematics and physics after the age of 16 (RSA, 2007). The gender gap in post-16 
uptake of physics is larger in England than it is in Scotland, Ireland and Wales (RSA, 
2008).  

The UPMAP project  

The principal focus of the UPMAP project is to understand better what determines 
student attitudes towards mathematics and physics and the reasons for student subject 
choice. We are particularly interested in making sense of the phenomenon in which 
many of those who do well in mathematics and the sciences do not opt to pursue 
science, technology, engineering or mathematics (STEM) - related study at higher 
education (e.g., Reiss, 2000). In this paper, we report on undergraduates’ retrospective 
explanations of why they decided, or not, to study mathematics at university.  

The findings presented in this paper sit within those of an overall larger 
project (i.e. UPMAP) of three ‘Strands’, where Strand 1 employs quantitative 
methods to map trajectories of engagement and disenchantment of high school 
students in mathematics and physics by analyses of large scale and longitudinal 
statistical data (N≅20,000 student datasets), Strand 2 investigates subjectivities and 
school cultures by working ethnographically in twelve high schools chosen for their 
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range of staying-on rates post-16, and Strand 3 investigates young peoples’ higher 
education degree choices through analysis of individual narrative interviews. This 
paper focuses on our preliminary Strand 3 results; that is, we report on 
undergraduates’ reasons for participation, or otherwise, in mathematics at university. 

The outline of the rest of the paper is as follows: the body of this report starts 
with a brief explanation of the rationale and methodology of the higher education 
aspect of the UPMAP project then presents analyses and findings, concluding with the 
discussion where we draw out some points from the project as a whole. 

Strand 3, rationale and methodology 

UPMAP Strand 3 consists of 51 interviews from first year undergraduates under the 
age of 21, all of whom have mathematics or physics A level (or equivalent), about 
half of whom are reading STEM subjects. The interviews were narrative style and 
interpretation employed the psychoanalytic notion of the ‘defended subject’ (e.g. 
Waddell, 1998) as well as a form of grounded theorising we have called ‘face value’.  

The undergraduates we interviewed were recruited from four UK universities 
(referred to as ‘University A’, ‘University B’, etc.). The universities represent a range 
of institutions: two Russell group institutions in different regions of the country, one 
pre-1992 non-Russell group university and one post-1992 university. Recruiting the 
undergraduates for interview involved challenges in negotiating access, peculiar to 
each institution. In two of the four universities, we received an order of magnitude 
more applications from students than we were able to interview, so we had to have 
selection procedures. The main organising principle for the selection was that we 
should have comparable numbers in each cell of the table below. Numbers in cells 
give the breakdown from University A: 

 STEM Non-STEM 
Female 8 5 
Male  5 4 

The ratios in the table above are representative of the responses overall with 
more female and more STEM undergraduates presenting for interview. The sample 
represents undergraduates with a range of stories, which was what was sought, but we 
do not claim that the sample is all-inclusive or statistically representative. 

Data gathered in Strands 1 and 2 of the UPMAP project are being used to 
construct trajectories of participation in mathematics and physics of school students in 
the 12-17 age group and Strand 3 data are used to construct detailed understandings of 
reasons for participation (or not) in mathematics and physics from individuals in the 
18-20 age group. The central research question for Strand 3 is “What are the 
‘narratives of choice’ that undergraduates tell?”. Our ‘choice narratives’ (i.e., our 
interpretations of the interview data) will be used to inform Strand 2 interview 
schedule design (e.g. the time we spend in the Strand 2 interviews exploring the 
relative influence of school, family and other out-of-school influences on 
mathematics) and themes extracted from the Strand 3 data analysis will be used to 
interrogate the longitudinal Strand 1 data (e.g. the importance of the utility of 
mathematics as opposed to its intrinsic appeal). 

Methodology  

In Strand 3 the aim is to find out about how or why first year (under 21 years of age) 
undergraduates got to be on the course that they are enrolled in. Our method involved 
interviewing them and then analysing the resulting transcribed text. Each of the 
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undergraduate interviewees was informed about the project: their invitation was via a 
website or an email which explicitly said “please come and talk to us about your 
choice of course”. In part because the undergraduates knew why they were being 
interviewed, asking questions like “why did you choose study mathematics?” might 
produce rehearsed, standard responses like “I enjoy it” or “It’s my best subject” and, 
thus, underlying reasons for decision-making that arise from the individuals’ 
subjectivities might remain hidden. It was these reasons which we aimed to uncover 
and make sense of. We took as a theoretical underpinning a Kleinian-based 
psychoanalytical model (e.g. Waddell, op. cit.) that theorises that all persons defend 
against anxieties, thus taking as a principle that there are unconscious and 
subconscious influences on individuals’ decision-making about critical life events. 
These influences, while not separable from the cultural, gender and socio-economic 
positioning people experience, are not as well-defined as these sociological categories 
of ‘race, class and gender’. We aim to uncover complexities of decision-making that 
go deeper than the contextual background of students, recognising that individuals are 
not consciously aware of all of the reasons for decisions. 

Furthermore, there are mathematics-specific anxieties that we anticipated 
detecting (Nimier, 1993; Black et al., 2009). Hence the approach we have used is 
based on a narrative approach to interviewing (e.g., Hollway and Jefferson, 2000) 
which aims to elicit a story from the interviewee in which they reveal not merely the 
rehearsed and public face of their decision making, but also positionings, whether by 
themselves or by others, they’ve experienced (due to gender, class, ethnicity, etc.). A 
narrative approach also elicits memories of critical events and ‘random’ occurrences 
that have brought the person to where they are. The aim is to allow each interviewee 
to tell a story that includes details they were not fully aware of or, at any rate, did not 
necessarily consider relevant to their choice of university course.  

Our interviews were conducted as follows: we had established mobile or email 
contact with the undergraduate prior to the interview and welcomed them to the room 
in their university where the interview was to take place. After a few minutes of 
helping them to feel relaxed and telling them orally about the project, we generally 
started the interview by asking each student to talk about their education, encouraging 
them to start from wherever they wanted. The interview then proceeded from what the 
undergraduate offered, but with the interviewer’s aims of finding out about their early 
childhood experiences both in and out of primary school, their secondary school years 
and any out-of-school activities they were involved in. We also wanted to find out 
about any family, cultural or community influences on their decision making and we 
were alert to opportunities for asking students if there were any critical events they 
could remember where decisions about subject choices were made.   

In practice, interviewing ‘defended subjects’ by means of conducting such 
narrative style interviews requires the interviewer to manifest skills similar to those 
used in a counselling interview: we aimed to bond with the interviewee, so they’d be 
relaxed enough to tell their story, and we aimed to remember details within the 
approximately 50 minute interview so that we could pick up on an interesting thread 
at a later point in the interview, encouraging them to tell their story of their choices. 
Nevertheless, there is a fine line between a question that ‘follows’ a previous point 
and a direct question. Although asking formal, direct questions tends to elicit 
rehearsed or ‘defensive’ replies and is generally to be avoided, in conversational 
(narrative) interviews, a curious and engaged interviewer, having established a 
‘working bond’, will not always adhere to this protocol (e.g., humour sometimes gets 
the upper hand and in such a case, typically, the subsequent conversation has an 
improved emotional tone). The resulting conversation is thus a co-construction 
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between the undergraduate and the researcher: an audio text that was subsequently 
typed up to form the written text, ‘the transcript’.  

A post-interview pro-forma explained about how the undergraduate’s 
interview would be used and also provided the interviewee with the opportunity of 
making a comment on how the interview process had felt. Several interviewees were 
explicit in making a comment that indicated that the process of talking about their 
choices had brought to mind things they had not been aware of, validating the 
methodological process; for example: “I found it very interesting as it offered self-
reflexivity which I had not considered before” (Becky – all names are pseudonyms 
that indicate gender); “It was a nice relaxed atmosphere – and the questions asked 
were actually insightful for me in analysing my own education” (Peter).  

‘Face value’ and defended subjects 

Analysis of the interview texts is still on-going and we are employing different lenses 
to interrogate the data (Black, Mendick & Solomon, 2009). We refer to the different 
lenses we are using as: ‘face value’, ‘defended subject’, ‘discourses’ and ‘Strand 1 
constructs’. At the time of writing we have analysed interview texts from University 
A in the first two of these ways, ‘face value’ – where a grounded approach to the text 
was used to extract themes – and ‘defended subject’, and these analyses are the basis 
of this report.  

The brief ‘face value’ account, which is presented first, gives the reader a 
glimpse of the sort of things the undergraduates said in interview about their 
relationship with mathematics and their choices; it is not a quantitative presentation of 
categories of views but a background to the more detailed analysis that follows. Then, 
in the discussion of Dan, below, we indicate why a ‘face-value’ approach is not 
sufficient to understand these young peoples’ decision-making and yet is useful to foil 
a ‘defended subject’ interpretation. This is because the defended subject analysis 
proceeds by first locating indicators of defence – for example, inconsistencies, 
exaggerations, avoidances and silences are typical of ways that feelings are revealed, 
whether or not the person is aware of the revelation – and then by interpreting these 
indicators of defence in terms of the narrative the undergraduate is sharing and 
developing in the interview. 

This interpretative way of reasoning about affects is different to published 
reasoning in mathematics. In this interpretative work we read into the text, locating 
indicators of defence ‘between the lines’, as well as reading face value data from the 
text; in mathematics, of course, inference is strictly from premises via set rules of 
inference. A mathematician may well say that there are logical alternatives to the 
given interpretations and yes there are! The justification for the claim is not based on 
a closed, formal argument but on a holistic and intuitive appraisal, prepared for by 
study and experience of psychoanalytic methods and literature, and presented as a 
narrative itself which has also been adapted in the light of critical interrogation by 
others. 
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Analysis and findings 

This section gives an overview of undergraduates and their reasons for course of 
study from University A1, and then looks in detail at an indicative case. Our central 
aim is to better understand what has steered these students to the course on which they 
have embarked. In particular, for this BCME context, we examine the research 
question focussed on mathematics: “What are the ‘narratives of choice’ that 
undergraduates tell concerning mathematics?”. 

On ‘face value’ reasons for doing or not doing mathematics 

Of the 13 interviewees who were studying STEM subjects, predictably, those doing 
science or engineering considered mathematics as a tool, whereas those doing single 
or joint honours mathematics did not give reasons for choosing mathematics that 
included its usefulness – except at a meta level of it being a degree you could do other 
things with. Of the four reading mathematics, as joint or single honours, each of them 
expressed the intimacy of their relationship with mathematics; for example, “I always 
wanted to do mathematics and only mathematics” (Vera), “I couldn’t have lost my 
maths” (Chloe). 

Eight of the nine interviewees not studying a STEM subject had A level 
mathematics and six of them had grade A in it. These undergraduates’ stories of their 
choices frequently referred to ‘enjoying’ mathematics at school, but employed 
opposing discourses like ‘lack of relevance’ or ‘difficulty’ to explain why they had 
not applied for a mathematics-related degree; all of the six A-grade non-STEM 
interviewees used the discourse of being ‘good at’ mathematics to explain their 
reasons for their choice of A level mathematics. Discourses of challenge-and-interest 
and enjoyment-and-creativity were used to explain non-mathematical choices: 

Maths was the easiest of A-Levels for me by far … I liked maths because I was 
good at it, and I found it challenging but I didn’t find it interesting. But English, 
… I just found … more interesting and I’d rather do something that I find 
interesting and challenging than something I find easy and less interesting. 

(Becky, reading English, other A levels English and history; all A grades) 

And maths, which I did to A-Level, I didn’t really enjoy as much. … I suppose to 
say I didn’t enjoy it is a bit extreme but I didn’t get the same enjoyment out of it 
as I did with English and History. I sort of liked the creativeness, like writing 
essays. … I sort of saw [maths] as a job to be done, so I suppose that’s the reason 
that I didn’t enjoy it as much. 

(Peter, reading history, other A levels English and history; all A grades) 

These undergraduates expressed their reasons for their choices, we have to 
assume, genuinely. Nevertheless, we can learn more about their decision making 
when we interrogate their interview text further. For example, early on in Dan’s 
interview he tells of switching from sociology to mathematics A level within the first 
few weeks of Y12. His reason being that “with maths I knew I knew stuff”. At face 
                                                
1  We have completed our interviewing at University A and have 22 interviews from first year 
undergraduates who have at least one of mathematics and physics A level. Twenty one of these 
interviewees had mathematics A level, and 17 of these achieved grade A. Of the 21 with A level 
mathematics, 11 attended a maintained comprehensive school or post-16 college, 7 attended a 
maintained selective school and 3 attended fee-paying (i.e. private) schools (one of whom was a 
scholarship student). 
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value this is a rational decision by a young man who has the option of continuing with 
sociology or switching to mathematics. But even his utterance that communicates the 
reason for his switch is open to other interpretations: from the ‘defended subject’ 
perspective, a reader could ask, for example, ‘why does he have the need to know 
stuff at the beginning of a course?’. This ‘I know I know’ aspect of Dan’s relationship 
with mathematics is then threatened later on in his Y12, producing anxiety:  

I found the, the very last, the very last exam that we did for the further maths AS 
was FP1 and it was really, really tough  

and he did not continue to A2 further mathematics. In the interview he had said that 
when he was younger: 

I was always quite good at [maths] I guess. And then I don’t know I just like 
found it quite interesting like kind of got it quite easily as well and did it quite 
well easily so, I just found it interesting I guess. 

Yet: 
I didn’t really enjoy maths like as I got older, like it was quite, it just got to a level 
where it got too complex and just stuff I could never see myself ever using in my 
day-to-day life. 

(Dan, reading English and drama, other A levels English and chemistry, all A 
grades, further maths AS grade B) 

A defended subject reading of Dan’s story is that Dan’s relationship with 
mathematics is through performance, so when performance is perceived as weak – B 
grade for an AS – the relationship is under threat and defences are evoked. When Dan 
says “I could never see myself ever using in my day to day life” we see an example of 
Nimier’s ‘mathematics is remote’ defence against mathematics (Nimier, op. cit.). 

Robin: studying history with economics 

The following discussion of Robin shows that defences themselves are interwoven in 
complex ways. The claim is made that Robin does not choose to read mathematics at 
university because of certain anxieties which he seems to defend himself against 
outside his conscious awareness. This report starts (1) by presenting background 
information on Robin. Then in (2) we present extracts concerning being ‘good at 
maths’ and in (3) indicate the importance of history and engineering to Robin while 
explaining how he was construed as a defended subject vis à vis his choice of course. 
The section concludes (4) by justifying the claim above. 

(1) Robin is from a town in the North of England where he went to a middle 
school, high school and post-16 college. He has one sister six years his junior, his 
father is an accountant turned manager in the NHS, and his mother was a journalist, 
then became a full-time mum, and is now a teaching assistant. He was at the 
beginning of his second term, aged 19, studying history with economics at University 
A when he was interviewed. His A levels (grade) were: mathematics (A), further 
mathematics (A), physics (A) and history (A) and he has an AS in economics (B).  

(2) Early in the interview Robin says: “I’ve always been good at maths from 
basically whenever I could start thinking”. He also tells that he got National 
Curriculum level 8 when in Y7, was in an express GCSE mathematics class on 
starting high school in Y9 and took the GCSE in Y10; he adds that he “only” got an A 
for GCSE, had his paper remarked but did not get it upgraded to A*.  

Mathematics is the subject chosen by a close peer group with which Robin 
identifies: At post-16 college, he studied maths entirely within a ‘further maths’ class; 
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there were 11 students in the class, three of whom who went to read mathematics at 
prestigious universities had been ‘maths class-mates’ with Robin since Y6: 

It’s weird because all this time with them doing maths even when I was doing 
engineering they were suddenly like we came back at Christmas and they all had 
work for the next semester and stuff and I was kind of interested to know what it 
was and suddenly this was stuff that I couldn’t do because obviously they’d been 
taught. 

After saying this he says that recently “[I]found all my further maths stuff but 
I didn’t want to throw it out because I don’t want to get rid of maths”.  

(3) While at school, Robin had been involved with two engineering 
enrichments: one in the summer between Y8 and Y9 when he won a prize for making 
a robot. The other was a longer project, Engineering Education Scheme in Y12 
(‘EES’ – organised by his history teacher), with three other students from his college; 
all four of these EES students started engineering courses at University H straight 
from school, but Robin left there after a term, to do history and economics at 
University A. University H was Robin’s second choice for engineering after 
Cambridge – where he was rejected after interview. He was also rejected (at an 
engineering careers event) by the RAF to train as a pilot as he had asthma. Robin’s 
history teacher is closely linked to his engineering as well as his degree choice: 

And I had a brilliant history teacher again at both AS and A2 years and she really 
got me involved with history so … She was really an enthusiastic person and she 
was as enthusiastic about engineering as she was about history. Her profession 
was history, she had a history degree from York but she really enjoyed, in a sense 
she’s quite a lot like me, she enjoys history but she enjoys working out how things 
work and stuff like that. So, yeah, I enjoyed the last year of history at A-level.   

Thinking of Robin as a defended subject, we note two rejections related to 
engineering: no place for him at Cambridge nor in the RAF. So Robin, initially 
groomed for engineering, to defend himself, has to look elsewhere. Towards the 
beginning of the interview he spontaneously says:   

Quot. B: I really enjoyed maths. Which is why I didn’t want to do a straight 
history degree, my ideal would have been history with maths but obviously you 
can’t do that. So economics was the closest thing to it basically. 

 (4) How come he’s not doing mathematics? Short answer: because it is too 
risky; thought of failure elicits anxieties from which Robin has to defend himself. 
Robin has a mathematical self-identity going back to early awareness of “thinking”, 
yet he was not quite an A* and could not follow his former classmates’ mathematics 
degree work, so failure is imaginable. He experienced rejection by engineering, 
despite having been positioned to participate in that field and he defended himself 
against further rejection by avoiding continuing with engineering. His history teacher 
inspired hope in a different arena; he fantasises identification with her and follows her 
path. 

Discussion  

The extracts from the analysis of Robin’s narrative exposes complexities around 
decision making, like choice of university course, that is central to young people’s 
lives. We have shown that certain defences of the self (where defences are theorised 
as a normal part of personhood), can disrupt a potential career. Adolescent concerns 
do not sit comfortably with a rational, ‘flow chart’ model of decision making. Indeed, 
the very discourse of ‘Choice’ (Salecl, 2009) that demands individuals’ attention to 
their ‘life-making’ provokes anxieties. Ultimately, withdrawals and approaches are 



Joubert, M. and Andrews, P. (Eds.) Proceedings of the British Congress for Mathematics Education April 2010 

182 

emotional acts: Robin is attracted to his history teacher and withdraws from feared 
failure in his primal intellectual domain (mathematics).  

There are some features of mathematics as experienced in education that could 
be changed and, although we will never know whether this would have been enough 
to keep Robin in the fold, issues that might not have provoked the defences that 
resulted in his a-mathematical path are: 

• Believing that ‘good enough’ is, indeed, good enough; 
• Having an imaginative projection of doing mathematics in the future; 
• Developing a personal, emotionally salient, view of mathematics. 

These three items will be developed in other writing. Briefly, the discourse of 
having to be the ‘best’ in mathematics to continue is still pervasive and puts many 
young people off. Continued careers development, while on-going, is needed to seed a 
personal fantasy that can turn accountants into lion tamers (youtube webref) and 
recent developments in illustrating opportunities a mathematics degree may offer are 
very encouraging (mathscareers webref). And, as our Strand 1 preliminary findings 
already reinforce, students’ mathematics-specific ‘self concept’ and confidence in 
conceptual tasks, are key psychological factors that have an influence – independent 
of gender, ethnicity and class – on intention to choose mathematics. Thus, as these 
mathematics self concepts are experienced differently, honouring the notion of 
‘student diversity’ requires a range of approaches into conceptualising, learning, 
enjoying and becoming inspired by mathematics. 
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Using longitudinal, cross-system and between-subject analysis of the TIMSS 
study series to calibrate the performance of lower-secondary mathematics 
education in England 

Kenneth Ruthven 
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Evidence from the TIMSS study series is used to calibrate trends in lower-
secondary mathematics in England between 1999 and 2007, relative to 
other educational systems, and in comparison with science. Over this 
period the proportion of students displaying high achievement in 
mathematics rose, apparently in response to reforms associated with the 
national Strategy. However, the proportion of students displaying positive 
attitude to mathematics fell substantially. In both respects, performance in 
mathematics continued to compare unfavourably with that in science. 

Performance trends; international comparisons; mathematics education; 
science education; student achievement; student attitude.  

Introduction 

The focus of this paper is on using findings from the TIMSS international study series 
to examine trends in the performance of the English educational system within a 
framework of cross-system and between-subject comparison. This work has been 
undertaken in the context of a current research initiative (Economic and Social 
Research Council [ESRC] 2006) intended to inform ongoing efforts to secure 
significant enhancements in young people’s school achievement in science and 
mathematics, and significant increases in their participation in further study and 
employment in these areas. As part of the initiative, the Effecting Principled 
Improvement in STEM Education (epiSTEMe) project (Ruthven et al. 2010) is 
undertaking research-based pedagogical development, designed to be suited to 
implementation at scale within the English educational system, and aimed at 
improving student engagement and learning in early secondary-school physical 
science and mathematics. 

In recent years, schooling in England has been reshaped by two waves of 
reform aimed at standardising educational provision and improving educational 
outcomes. From 1989, a national curriculum was introduced, and a system of national 
assessment at primary and lower-secondary phases, accompanied by a strengthening 
of mechanisms of professional accountability, notably through teacher evaluation and 
school inspection. From 1997, these policies were extended by setting targets for 
improved performance, particularly in student achievement, and by launching a 
national programme of school improvement, supported by extensive professional 
development. From 1999, in particular, the teaching of mathematics in primary 
schools in England was expected to follow the approach to lesson planning, teaching 
method, and classroom assessment established by the national Strategy (Brown et al. 
1998; Reynolds and Muijs 1999). Initially developed for use at primary level, this 
pedagogical model was extended to lower-secondary level both in mathematics (from 
the student cohort entering in 2001) and in science (from the cohort entering in 2002).  
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Reporting on implementation of the Strategy at lower-secondary level, the 
main trends noted by school inspectors in mathematics were towards “improvements 
in the planning of teaching, with a greater focus on learning objectives, the structure 
of lessons and teachers’ use of questioning” (Office for Standards in Education 
[OfStEd] 2004, 21), and the introduction of “systems… for regular monitoring of 
pupils’ performance, with action taken to help them improve” (OfStEd 2004, 24). The 
approach developed in science was similar: inspectors found that the recommended 
lesson structure was near universal, as was emphasis on teaching to explicit objectives 
(OfStEd 2004, 31), and that teacher assessment was “being increasingly used more 
successfully to guide pupils on how to improve their work” (OfStEd 2004, 29). 

Using the TIMSS study series to analyse changes in system performance 

International study series such as the Trends in International Mathematics and Science 
Study [TIMSS] provide a framework for examining educational trends in terms of 
cross-system and between-subject comparison. In addition, their estimates of student 
achievement are less open to inflation as a result of the “teaching to the test” that 
high-stakes national testing encourages. Furthermore, they provide assessments not 
just of student achievement but of student attitude, broadening the types of outcome 
available for consideration. Compared to the PISA study series, the achievement 
measures of TIMSS are more curriculum based, and so better indicators of the 
developing knowledge-base necessary for further study (Ruddock et al. 2006); 
important for the particular concerns of the ESRC initiative with raising student 
participation in more advanced mathematical and scientific courses.  

Equally, the TIMSS series usually allows an age cohort to be tracked from the 
elementary/primary level in one study to the middle/lower-secondary level in the next 
(as shown in Table 1). Thus the entire schooling of what has been termed the “earlier” 
English TIMSS cohort took place following the initial reforms but well prior to the 
subsequent ones associated with the Strategy. TIMSS provides less information about  
the “intermediate” cohort1 which was the last to have virtually no experience under 
the subsequent reforms, while the “later” cohort was entirely schooled under these 
subsequent reforms. Thus any improvement in system outcomes as a result of the later 
wave of reforms should be indicated by changes between the earlier and intermediate 
cohorts on the one hand, and the later cohort on the other. 
Table 1: Progress of student cohorts through school phases and the TIMSS study series 

Cohort Entered 
primary 

phase 

Studied at 
Grade 4  
(Year 5) 

Entered 
secondary 

phase 

Studied at 
Grade 8  
(Year 9) 

Earlier cohort 1990 1995 1996 1999 
Intermediate cohort 1994 not studied 2000 2003 
Later cohort 1998 2003 2004 2007 

Information and data used in this paper have been extracted from the most 
recent TIMSS reports (Mullis, Martin and Foy 2008a; 2008b; Sturman et al. 2008). 
The findings for England will be situated within the distribution of results across 
                                                

1  The intermediate cohort was not studied at Grade 4 level in 1999, and did not complete the 
main attitude measures at Grade 8 level in 2003. There were also sampling weaknesses: England 
nearly satisfied guidelines for sample participation rates only after replacement schools were 
included. In addition, 3 of the other systems used as comparators here did not participate in the 
2003 TIMSS study. 
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those 18 educational systems that participated in both the 1999 and 2007 TIMSS 
studies, and which, like England, taught a general/integrated science curriculum at 
this level1.  

Establishing benchmarks for student achievement and attitude 

TIMSS defines (in terms of test scores) several “benchmarks” for student 
achievement. Here, the focus will be on what TIMSS terms the “high international” 
benchmark. In Mathematics at Grade 8 level, this is characterised in terms of students 
being able to “apply their understanding and knowledge in a variety of relatively 
complex situations”, rather than, at the next benchmark, to simply “apply basic 
mathematical knowledge in straightforward situations”. This provides, then, a suitable 
marker for the level of capability required for more advanced study in STEM fields. 
Likewise, in Science, students who achieve the high benchmark are characterised as 
being able to “demonstrate conceptual understanding of some [science]”, compared to 
the lower “recognise and communicate basic scientific knowledge”. Here then, the 
operational index of “[subject] achievement” in an educational system will be the 
percentage of students reaching this high achievement benchmark in the subject. 

Turning from achievement in a subject to attitude towards it, the most relevant 
outcome measure available in the TIMSS study series is of “high positive affect 
towards [subject]”. We can treat this as a benchmark of attitude paralleling the 
benchmark of achievement analysed above. Operationally, to figure in this category 
students had to respond affirmatively (on average) to three statements (agreeing that 
they like the subject, that they enjoy learning the subject, and disagreeing that the 
subject is boring). This benchmark provides, then, a suitable marker for the kinds of 
attitude conducive to participation in more advanced study in STEM fields. Thus here, 
the operational index of “[subject] attitude” will be the percentage of students in an 
educational system reaching this positive attitude benchmark in the subject. 

This apparatus will now be used to analyse trends in system performance. 
Each set of index scores from the 18 systems creates a distribution. For example, in 
Table 2 below, the proportion of students reaching the high achievement benchmark 
for science was 39% for the median system in 1999 and 38% in 2007. The median 
system change in this percentage between cohorts was +1. While the main analysis 
will focus on these cohorts because fuller information is available on them, the 
intermediate cohort will later help to triangulate and sharpen findings on achievement.  

Examining between-cohort changes in system performance on student achievement 

In science, the markers in Table 2 show little overall change in levels of achievement 
between the earlier and later cohorts. For England specifically, performance did not 
change significantly in absolute terms, and remained well above the median position 
and a little below the upper quartile in relative terms. The situation as regards 
mathematics is rather different. Overall levels of achievement drifted downwards 
                                                

1  As well as England (EN), these 18 systems comprise British Columbia (BC), Chinese Taipei 
(TW), Hong Kong (HK), Iran (IR), Israel (IL), Italy (IT), Japan (JP), Jordan (JO), (South) Korea 
(KR), Malaysia (MY), Massachusetts (MA), Ontario (ON), Quebec (QC), Singapore (SG), 
Thailand (TH), Tunisia (TN), United States (US). Although some data from Massachusetts is 
included in relation to the United States, the portion is so small, and state-level education policies 
sufficiently distinctive, that both entities can reasonably be included as independent ‘systems’ 
within the analysis. Likewise, the relative independence of the Canadian provinces in educational 
matters justifies their treatment as distinct ‘systems’. 
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between the cohorts. However, there was a marked improvement (the second largest 
such improvement) in the absolute performance of England. In relative terms, too, 
England moved from well below the median position (closer indeed to the lower 
quartile) to a little above the median. Comparing the two subjects, then, whereas 
England’s performance in science changed negligibly between the two cohorts, 
performance in mathematics improved, although not to a level matching science. 

Table 2: Distribution of system performance on Grade 8 achievement:  
Proportion of students reaching the TIMSS high achievement benchmark1 

Distribution Mathematics  Science 

 
Earlier 
cohort 
scores 

Later 
cohort 
scores 

Between 
cohort 

changes 

 Earlier 
cohort 
scores 

Later 
cohort 
scores 

Between 
cohort 

changes 
Upper 
quartile 65% 59%        + 1  47% 53%      + 3  

Median 33% 32%        - 2  39% 38%      + 1 
Lower 
quartile 20% 17%        - 6  23% 22%      - 2 

England 25% 35%     + 10 ↑  45% 48%     + 3 NS 

 
To what degree, though, might this rise in mathematics performance be a 

legacy of improvement during the primary years (to Grade 4/Year 5) rather than 
indicative of enhancement over the middle/lower secondary years (to Grade 8/Year 
9)? Unfortunately, TIMSS data is available at Grade 4 level for only 8 of the 18 
systems under consideration. Of these 8 systems, England had the largest 
improvement in mathematics achievement at both levels. Nevertheless, the 
improvement at Grade 8 level (of 10 percentage points) was notably smaller than at 
Grade 4 level (where the rise was 19 percentage points, from 24% to 43%). However, 
smaller but still substantial improvements at Grade 4 level in Hong Kong and Ontario 
did not feed through to Grade 8 level. These patterns suggest, then, that there is no 
straightforward relationship between changes at the two levels. Nevertheless, given 
the magnitude of the English improvement at Grade 4 level, it is plausible to 
conjecture that this contributed to the subsequent improvement at Grade 8 level.  

Triangulating between-cohort changes in performance on student achievement 

To investigate further, it is necessary to take account of evidence about the 
intermediate cohort, and helpful to triangulate TIMSS findings against the results of 
national testing (DCSF 2008). Over the period under review, English schools and 
teachers were under enormous pressure to improve the performance of students in 
national tests: for lower-secondary (KS3) assessment at the end of Year 9, level 6 
represented the key benchmark of high achievement. The graphs for science and 
mathematics (Figure 1) show that the relative demands of the national and TIMSS 
benchmarks differ between subjects: in science, the level 6 benchmark in national 
testing is more demanding than the TIMSS high achievement benchmark; in 
                                                

1  Significance of differences between cohorts are those reported in the TIMSS studies, and 
indicated as follows: later cohort: ↑ significantly higher; NS not significantly different; ↓ 
significantly lower 
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mathematics, this pattern is reversed. In TIMSS terms, then, the expectations of 
English national testing are higher in science than in mathematics.  

 
Figure 1: Change in English system performance between cohorts: Proportion of students 
achieving the TIMSS high benchmark compared to level 6 in KS3 tests.  

On trends over time, the graphs show that performance on national tests 
improved markedly between 1999 and 2003 in both science and mathematics, while 
performance on TIMSS remained static: this suggests a fairly superficial form of 
improvement, enhancing student performance specifically on national tests. Between 
2003 and 2007, however, trends for the two subjects diverged. Both in national tests 
and in TIMSS, performance remained static in science, whereas it rose markedly in 
mathematics. This suggests that the reforms associated with the Strategy, which 
affected only the later cohort, led to a more fundamental form of improvement in 
achievement in mathematics, but not in science1. 

Examining between-cohort changes in system performance on student attitude 

Turning to assessment of student attitude within TIMSS (Table 3), in both subjects,  
the markers for the overall distributions of system scores, and for the distribution of 
individual system changes, indicate that the predominant pattern was one of decline in 
performance. In both subjects England saw a very substantial fall between the two 
                                                

1  Some caution needs to be exercised over TIMSS 2003 results because of the sampling 
problems referred to in Note 2. Expert review of TIMSS items has also found their likely familiarity 
to English students to be rather greater in mathematics than in science (Ruddock et al. 2006). 
However, this did not lead to a subject-differentiated pattern of change in performance between 
1999 and 2003; over that period rising performance in national tests in mathematics was not 
paralleled in TIMSS. 
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cohorts, markedly greater than the general trend. In science, England displays a 
marked absolute decline (the second largest of any system): in relative terms, it 
moved from just below the upper quartile to the median position (which was quite 
close to the lower quartile). In mathematics, too, England displayed a marked absolute 
decline in performance (the largest of any system): in relative terms, it moved from 
just below the upper quartile position to just above the lower quartile. Comparing the 
two subjects, then, England performs more strongly in science than in mathematics, 
certainly in absolute terms, rather less clearly so in relative terms. 

Table 3: Distribution of system performance on Grade 8 attitude:  
Proportion of students reaching the TIMSS positive attitude benchmark 

Distribution Mathematics  Science 

 
Earlier 
cohort 
scores 

Later 
cohort 
scores 

Between 
cohort 

changes 

 Earlier 
cohort 
scores 

Later 
cohort 
scores 

Between 
cohort 

changes 
Upper 
quartile 67% 59%        - 1  77% 68%       + 1 

Median 58% 47%        - 7  63% 55%       - 6 
Lower 
quartile 46% 39%      - 12  59% 52%      - 10 

England 65% 40%      - 25 ↓  76% 55%      - 21 ↓ 

Examining between-cohort changes in system performance on combined outcomes  

In some systems, there was very little change in combined performance on 
achievement and attitude between cohorts, either in science (Figure 2) or in 
mathematics (Figure 3): in Tunisia (TN) for example (at the top left of both figures). 
In others, Malaysia (MY) for example (again towards the top left of the two figures), 
there were marked falls in both achievement and attitude in both subjects.  

In both subjects, trend lines relating attitude to achievement across the systems 
as a whole indicate that higher achievement tends to be associated with lower attitude; 
this is likely to reflect underlying system-level differences (in factors such as 
economic development and educational orientation) that mediate both achievement 
and attitude. The shift between the trend-lines from 1999 (dashed) to 2007 (solid) 
reflects some form of decline between the two cohorts; and the segments indicating 
movement of individual systems again show that this is predominantly due to changes 
(downwards) in attitude rather than (backwards) in achievement. 

On achievement, the consistent strong riser is Massachusetts (MA), which 
improved 13 percentage points in science (from 43% to 56%), and 19 percentage 
points in mathematics (from 33% to 52%). On attitude Massachusetts declined 5 
percentage points in science (from 59% to 54%), and 6 percentage points in 
mathematics (from 47% to 41%), but this is in line with the median decline across 
systems in each of these subjects. On achievement, England (EN) was the other strong 
riser in mathematics, but not in science. On attitude, as already noted, England fell 
very substantially in both subjects, at or near the extremes of decline.  

The Massachusetts example shows that such a fall cannot be attributed to any 
inevitable within-system trade-off between achievement and attitude. Consequently, 
in both subjects, England surrendered a considerable lead over Massachusetts on 
attitude, and fell behind on achievement. Like England, Massachusetts has had a 
relatively longstanding systemic improvement programme based on establishing 
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common professional standards and ambitious achievement targets, backed by 
extensive professional development and strong accountability mechanisms. However, 
whereas the pedagogical model promoted by the Strategy in England was shaped by 
older research on the effective teaching of basic skills (Reynolds and Muijs 1999), the 
Standards influencing reform in Massachusetts reflected more recent research on 
developing higher-order thinking (Massachusetts Department of Education 1999). 

 

 
Figure 2: Change in system performance in Grade 8 science between TIMSS cohorts. 

              
Figure 3: Change in system performance in Grade 8 mathematics between TIMSS cohorts. 
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Conclusion 

This paper has shown how the TIMSS international study series can be used to 
construct a framework for cross-system and between-subject comparison capable of 
illuminating trends in system performance on student achievement and attitude. 
Applied to the case of English lower-secondary schooling, this challenges the 
optimistic picture from national assessment. Compared to other systems in terms of 
the TIMSS high achievement benchmark, fundamental gains by English students have 
taken place only in mathematics, and then only in response to the later reforms 
associated with the national Strategy. Compared to other systems in terms of the 
TIMSS positive attitude benchmark, declines in both mathematics and science have 
been exceptionally severe amongst English students. Finally, in these international 
terms, English performance remains lower in mathematics than in science. 

These findings emphasise the importance of developing a better understanding 
of student affect and identity, a salient feature of many of the projects in the ESRC 
research initiative. Equally, new insights are clearly required into ways of raising 
student achievement: in England, there is scope for further improvement in 
mathematics from a still relatively average performance, and for improvement in 
science beyond a relatively high, but static, performance. Major recent shifts in 
English education policy – notably, revision of the national curriculum to reduce 
prescriptiveness; abolition of compulsory national testing at lower-secondary level; 
abandonment of centrally-driven school improvement – may now have created the 
conditions for projects such as epiSTEMe to collaborate with schools and teachers in 
undertaking pedagogical development towards these goals in the light of the most 
recent research on effective teaching and learning. 

References 

Brown, M., M. Askew, D. Baker, H. Denvir, and A. Millett. 1998. Is the National 
Numeracy Strategy research-based? British Journal of Educational Studies 
46(4): 362-385. 

Department for Children, Schools and Families [DCSF]. 2008. National Curriculum 
Assessments at Key Stage 3 in England, 2006/07 (Revised). Statistical First 
Release 06/2008. London: DCSF. 

Economic and Social Research Council [ESRC]. 2006. Targeted Research Initiative 
on Science and Mathematics Education. Swindon: ESRC. 

Massachusetts Department of Education 1999. Partnerships Advancing the Learning 
of Mathematics and Science. Malden MA: Mass. Dept. of Ed. 

Mullis, I., M. Martin, and P. Foy. 2008a. TIMSS 2007 International Mathematics 
Report. Boston: TIMSS International Study Center. 

–––––  2008b. TIMSS 2007 International Science Report. Boston: TIMSS 
International Study Center. 

Office for Standards in Education [OfStEd]. 2004. The Key Stage 3 Strategy: 
evaluation of the third year. London: OfStEd. 

Reynolds, D., and R.D. Muijs. 1999. The effective teaching of mathematics: a review 
of research. School Leadership and Management 19(3): 273-88. 

Ruddock, G., T. Clausen-May, C. Purple, and R. Ager. 2006. Validation Study of the 
PISA 2000, PISA 2003 and TIMSS 2003 International Studies of Pupil 
Attainment (DfES Research Report 772). London: DfES. 

Ruthven, K., C. Howe, N. Mercer, K. Taber, S. Luthman, R. Hofmann, and F. Riga. 
2010. Effecting Principled Improvement in STEM Education. Proceedings of 
the British Society for Research into Learning Mathematics. 

Sturman, L., G. Ruddock, B. Burge, B. Styles, Y. Lin, and H. Vappula. 2008. 
England's Achievement in TIMSS 2007: National Report for England. Slough: 
NFER. 



Joubert, M. and Andrews, P. (Eds.) Proceedings of the British Congress for Mathematics Education April 2010 

191 

Effecting Principled Improvement in STEM Education: Research-based 
pedagogical development for student engagement and learning in early 

secondary-school physical science and mathematics 

Kenneth Ruthven, Christine Howe, Neil Mercer, Keith Taber, Stefanie Luthman, 
Riikka Hofmann and Fran Riga 

University of Cambridge 

The epiSTEMe project forms part of a national initiative researching 
means of improving young people’s participation and achievement in 
mathematics and science education. The project involves collaboration 
between researchers and teachers to devise an intervention, suitable for 
widespread dissemination, to enhance student engagement and learning in 
early secondary-school physical science and mathematics. Drawing on the 
now extensive research base examining US experience of Standards-
based reform, and parallel research and development efforts in the UK and 
elsewhere, the project aims to translate promising pedagogical principles 
into an operational apparatus for viable professional practice. 

effective teaching methods; mathematics and science education; redesign 
research; researcher-practitioner collaboration; secondary schools; student 
engagement and learning  

Introduction 

This paper presents the rationale for the Effecting Principled Improvement in STEM 
Education [epiSTEMe] project as part of a current research initiative (Economic and 
Social Research Council [ESRC] 2006) intended to inform ongoing efforts to secure 
significant enhancements in young people’s school achievement in science and 
mathematics, and significant increases in their participation in further study and 
employment in these areas. The epiSTEMe project is undertaking research-based 
pedagogical development aimed at improving student engagement and learning in 
early secondary-school physical science and mathematics, in a form suited to 
implementation at scale within the English educational system. 

From an initial proposal made in January 2007, the project has been funded to 
run from August 2008 to January 2012. It is organised in three main phases, 
associated with consecutive school years. During Phase 1 (2008/09) we worked with 
science and mathematics teachers from partner schools to devise a classroom 
intervention, including trialling and refining components of teaching modules and 
research instruments. During Phase 2 (2009/10) we are studying classroom 
implementation of the full modules by the participating teachers, and the functioning 
of the research instruments, with a view to finalising both for Phase 3 (2010/11). We 
are currently recruiting further schools and teachers to be involved in implementation 
and research during this forthcoming phase. The focus of this research is on 
evaluating the effectiveness of the intervention – in terms of changes in student 
attitude and growth in student knowledge – and analysing its operation – in terms of 
core classroom processes identified by the integrative theory informing its design. 
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From key questions to a research goal 

The call for the ESRC Initiative posed, in general terms, four key questions to the 
research community (ESRC 2006, 2): 

RQ1) What are the key factors that shape patterns of participation, engagement 
and achievement in science and/or mathematics education by children and young 
people and what does this tell us about the kinds of intervention that are likely to 
have greatest impact on participation, engagement and achievement?  
RQ2) What can we learn from the effectiveness of past and current interventions, 
initiatives and practice to inform the design and development of more effective 
future interventions, initiatives and practice?   
RQ3) How can research-informed approaches help to understand and address key 
challenges in enhancing participation, engagement and achievement in science / 
mathematics [in particular to address differences linked to socio-economic status, 
gender, and ethnicity]? 
RQ4) What specific new interventions, or changes in policy or practice, offer the 
greatest potential to improve engagement and learning in science / mathematics 
and how could their potential effectiveness and feasibility be assessed more fully?  

In response to these questions, the epiSTEMe proposal was developed by an 
interdisciplinary team made up of colleagues with specialisms in psychology of 
education (Howe), language in education (Mercer), mathematics education (Ruthven), 
and science education (Taber). Had it proved possible within the timespan and 
personnel available, it would also have been desirable to call at this formative stage 
on expertise in sociology of education and in educational improvement. The goal was 
to draw on a spectrum of relevant research fields to fashion a cogent proposal that 
integrated their insights to exemplify a more strongly interdisciplinary and cross-
subject approach to research in the emerging area known as STEM [Science, 
Technology, Engineering and Mathematics] education. The proposal aimed to achieve 
this through deriving promising principles from prior research and development, and 
applying these to design a classroom intervention (and associated teacher training) 
suitable for wide-scale implementation. The research envisaged not only evaluating 
this intervention but creating and testing integrative theory to explain its mechanisms. 

A key decision was to focus on the early secondary years. It is during this 
phase of schooling that students meet specialist study of mathematics and science for 
the first time, and it is known to be particularly important in forming young people’s 
orientation towards further study of these subjects (Osborne, Simon and Collins 
2003). In addition, from the point of view of implementation, this phase of schooling 
is the earliest one in which reform becomes possible through working with relatively 
small cohorts of specialist secondary teachers rather than a very large cohort of 
generalist primary teachers. Moreover, because this phase is relatively distant from 
the pressures of high-stakes external assessment, it offers better prospects of teachers, 
students and parents being willing to explore new approaches, providing a foundation 
for change to subsequently work its way upwards through secondary education.  

From research base to a pedagogical proposal 

Examining the research base at the start of 2007, the amount of relevant British work 
was limited. While we were aware of a range of interesting development activity, 
much of this proved to be un- or under-researched. However, the Evidence for Policy 
and Practice Initiative [EPPI] (Bennett et al. 2005) had conducted some useful 
systematic reviews. These were highly focused: several of the science teaching 
reviews, for example, examined small group discussion in relation to particular types 
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of learning process or outcome (now summarised in Bennett et al. 2010), while a 
mathematics teaching review had examined strategies to raise pupils’ motivational 
effort at mid-secondary level (Kyriacou and Goulding 2006). These reviews, too, had 
had to face the lack of relevant British studies. For example, while Kyriacou and 
Goulding identified 25 such studies related to their topic, they judged “relevance of 
the focus of the study for the review question” to be “low” in 19 cases and “high” in 
none; likewise, the “appropriateness of design and analysis for the review question” 
was judged to be “low” in 19 cases and “high” in only one.  

Nevertheless, in scoping epiSTEMe, there was relevant British research and 
development that deserved attention. In particular, previous work had sought to 
develop well-theorised pedagogical approaches running across science and 
mathematics teaching. One longstanding programme had developed a pedagogical 
model for lessons aimed at “cognitive acceleration” (Shayer and Adey 2002). 
Reflecting on this programme, Shayer and Adhami (2007) reported that the original 
intention was to use periodic lessons within science or mathematics as a context for 
more fundamental cognitive acceleration that would then support conventional 
instruction. In the light of experience, however, they suggested that the intervention 
had been most successful where it had served not as a complement to conventional 
instruction but as a constructive critique of it, leading teachers to incorporate elements 
of the new pedagogical model into their normal teaching. Another longstanding 
programme had developed a discourse-based approach that teachers had used 
successfully to promote “thinking together” in science (Mercer et al. 2004) and 
mathematics (Mercer and Sams 2006). Findings indicated that students could be 
enabled to use talk more effectively as a tool for reasoning; and that talk-based group 
activities could help develop individuals’ mathematical  and scientific reasoning, 
understanding and problem-solving. 

In early 2007, too, recent developmental research had given rise to widely 
circulated professional materials aimed at improving the quality of teaching and 
learning in secondary mathematics. Drawing on earlier precedents, Watson and De 
Geest (2005) had worked with teachers to develop pedagogical strategies to raise the 
quality of learning of lower-attaining students at early-secondary level. Respecting the 
professional autonomy and pedagogical preferences of participating teachers, this 
project emphasised personal innovation rather than collective development of 
common methods. But, while the project found important differences in teaching 
strategies, it identified a common commitment to offer students an inclusive and 
empowering engagement with mathematical thinking. While systematic evaluation 
proved difficult, available findings were encouraging. Building on previous research 
into diagnostic teaching, Swan (2006) had carried out design research around the 
development of resources to support teachers in improving the quality of learning in 
retake examination courses in further education. The underlying pedagogical model 
emphasised the use of collaborative discussion to elicit and reshape students’ existing 
knowledge and understanding. A systematic evaluation indicated that learning gains 
were greatest when the resources were used in such more student-centred ways. 

However, by far the largest corpus of directly relevant research had arisen 
from long-term, programmatic efforts in the United States to formulate Principles and 
Standards for School Mathematics (NCTM 1989; NCTM 2000) and National Science 
Education Standards (NAS 1995). These principles had been operationalised in 
“Standards-based” programs intended to foster coherent understanding of 
fundamental ideas and their relationships, by helping students to explore and make 
sense of the material that they are learning, and showing that knowledge is a tool for 
solving problems (Trafton et al. 2001). Thus, in response to the ESRC RQ2, the 
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epiSTEMe proposal sought to take account of pedagogical principles common to well 
researched programs that had been judged “exemplary” (by a Mathematics and 
Science Expert Panel of the US Department of Education) on the basis of evidence of 
effectiveness in multiple sites (on a large scale, in rural and urban locations, across 
US states) for multiple subpopulations (by age, gender, ethnicity, ability).  

Nevertheless, while the US exemplary curricula were research-informed in 
being extensively evaluated (e.g. Reys et al. 2003; Riordan and Noyce 2001), and in 
appealing to views of learning consonant with theoretical syntheses then available 
(e.g. Bransford, Brown and Cocking 2000; Kilpatrick, Martin and Schifter 2003), 
their design had been weakly framed in theoretical terms and their evaluation 
correspondingly restricted (Confrey 2006; Harwell et al. 2007). Our proposal sought 
to adapt principles proven in the US, framing them in theoretical terms which dovetail 
with complementary research undertaken in the UK and elsewhere, and using the 
resulting principled framework to design an intervention suitable for implementation 
in England in the first instance (but potentially also other parts of the UK). 

The epiSTEMe proposal was also designed to throw light on the other three 
research questions. In relation to RQ4, it sought to illustrate a type of innovation with 
potential to improve engagement and learning – and hence longer-term participation – 
and to do this in a way that would exemplify a powerful approach to assessing 
effectiveness and feasibility of innovations. In relation to RQ3, its background 
pedagogical principles had already been found to be effective in the US in boosting 
participation and achievement, and the proposed theory-guided refinements aimed to 
enhance this further. Finally, in relation to RQ1, the proposed research was based on 
the hypothesis that those features that make Standards-based curricula exemplary are 
key shapers of engagement and achievement. 

From pedagogical principles to operational apparatus 

Many of the exemplary US curricula share a pedagogical model organised around 
carefully-crafted problem situations, posed so as to appeal to students’ wider life-
experience, to inculcate ideas of acting as mathematicians/scientists, and to develop 
key disciplinary ideas. Material is developed in lessons that cycle through whole-class 
introduction by teachers, collaborative problem solving in small groups, whole-class 
synthesis by teachers, and individual practice and consolidation by students. The 
epiSTEMe project aims to build on this pedagogical model, encouraged by its 
compatibility with teaching methods and curricular activities that have already been 
successfully deployed in the earlier British research surveyed above.  

In addition to respecting principles that have emerged from research into 
Standards-based curricula, we have sought to refine such principles in the light of 
insights from broader theorisation and investigation. Central concerns have been how 
to build on students’ interests and experiences (Freudenthal 1983) while also 
addressing the affective and epistemic complexities of knowledge growth (Pintrich, 
Marx and Boyle 1993). Activities have been designed to support reflexive, intentional 
learning (Bereiter and Scardamalia 1989) recognising that this is a process of identity 
formation as much as cognitive organisation (Sfard and Prusak 2005). Concern with 
collaborative activity, social interaction and classroom dialogue has been informed by 
earlier work that has analysed the crucial contribution of these processes in bringing 
students to engage with differing perspectives so as to support effective learning (e.g. 
Howe et al. 2007; Mercer et al. 2004; Mortimer and Scott 2003). 

These ideas have guided the design of an introductory module intended to help 
establish the dialogic processes and supporting ground rules fundamental to the 
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intervention. To operationalise key principles further in terms of classroom teaching 
and learning, they have been translated into design criteria for topic modules:  

To cover those aspects of the topic prescribed for the early secondary (Key Stage 
3) curriculum (specifically Year 7 in mathematics). 
To fill out these prescriptions to build strong conceptual foundations for the topic. 
To show the human interest and social relevance (including, in mathematics, 
scientific application) of the topic. 
To make connections with widely shared student experiences relevant to the topic. 
To take account of students’ informal knowledge and thinking related to the topic. 
To provide means of deconstructing common misconceptions related to the topic. 
To provide for the exploration, codification and consolidation of key ideas. 
To exploit whole-class, group and pair discussion activity on a dialogic model to 
support these processes. 
To build in individual checks on student understanding with developmental 
feedback. 

In the light of the underlying ideas, these criteria have guided the design of 
illustrative modules on particular curricular topics: proportionality (linked to fractions 
in mathematics and forces in science); probability (in mathematics); electricity (in 
science). While all the modules seek to make connections between mathematics and 
science, this is a particular feature of the modules on proportionality. Proportional 
reasoning is known to be challenging, yet Standards-based approaches have proved to 
be effective (Ben-Chaim et al. 1998). Indeed, the principle of ‘simplification by 
integration’ (Iran-Nejad, McKeachie and Berliner 1990) suggests that an approach 
which co-ordinates and integrates mathematical and scientific treatments will provide 
students with additional capital to appreciate and benefit from the significance of 
engaging problems. Furthermore, quantitative representation may facilitate conceptual 
growth in science (Schwartz, Martin and Pfaffman 2005).  

This operational apparatus of design criteria and illustrative modules is 
intended to support pedagogical change by scaffolding the professional development 
of teachers (Ruthven 2005). First, such apparatus has a symbolic function, giving 
visible substance to change. Second, it has a pragmatic function, providing concrete 
frameworks for classroom activity. Third, this apparatus and its associated discourse 
have an epistemic function, crystallising central ideas –as expressed in the design 
criteria. Finally, inasmuch as such apparatus and its associated discourse explicitly 
incorporate a degree of flexibility, or are seen as doing so, they can serve a heuristic 
function, assisting thoughtful interpretation and local reformulation of practice. For, 
while pedagogical apparatus plays an important part in supporting, structuring and 
spreading good practice, successful reform depends on deeper understanding of, and 
flexible thinking about, the practice and its apparatus. 

From principled apparatus to viable practice 

Indeed, although Standards-based programs have been shown to have the potential to 
support effective pedagogical development (Remillard 2005), particularly if 
classroom materials have been designed to be “educative” for teachers (Davis and 
Krajcik 2005), they also run a risk of being assimilated to established pedagogies, 
often by teachers replacing or revising materials to make lessons more skills-oriented 
and less open-ended, demonstrated to reduce their effectiveness (Schoen et al. 2003). 
Fundamentally, successful implementation depends on teachers believing that they 
and their students have the capacity to engage productively with this type of approach 
(Arbaugh et al. 2006). In particular, teachers and students cannot simply be expected 
to be able to participate effectively in the necessary forms of interaction: the 
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development of their communicative skills and metacognitive awareness needs to 
become an explicit goal if it is to be successful, as also does the creation of a 
classroom environment in which there is clear, shared understanding of the value and 
functions of dialogue for learning (Alexander 2004). 

This represents a considerable challenge for any project which aims to design 
for implementation at scale. It requires what might best be described as “redesign 
research”: namely, an approach to design research that recognises that the successful 
planning of change has to take account of the existing state of affairs as well as an 
intended one. In particular, such an approach emphasises the need to establish a viable 
trajectory from the existing state to the intended one; indeed, it makes such a 
trajectory a condition for the plausibility of any intended state. Furthermore, the 
viability of such a trajectory depends on identifying what wider institutional change 
and professional learning are required. Such a trajectory, then, lies in a zone of 
proximal professional development, conditioned at its leading edge by ideals for 
intended practice, but at its trailing edge by the current state of practice and thinking 
(and notably of teachers’ craft knowledge).  

Moreover, as emphasised in the New Zealand approach to “best evidence 
synthesis” (Anthony and Walshaw 1997), reform at scale depends on successful 
negotiation, across the constituencies forming a professional community, of a new 
collective understanding of effective practice. Thus, the epiSTEMe project is 
deliberately designed to foster sustained interaction between university-based 
researchers and school-based practitioners. Huberman (1993, 34) has pointed to the 
benefits of such interaction “in which researchers defend their findings and some 
practitioners dismiss them, transform them, or use them selectively and strategically 
in their own settings”. Reframing ideas in order to collaborate successfully with 
teachers appears to trigger a decentring process amongst researchers. In particular, it 
creates a need to address the counter-examples, qualifications and challenges which 
arise as ideas are tested out by teachers. In doing so, researchers are obliged to go 
outside the study at hand, to marshal a broader range of scholarly thinking and 
research experience, and to bring them to bear on these claimed anomalies. In the 
epiSTEMe project to date, the design and trialling of the topic modules has been an 
important site for such dialogue. Equally, Bromme and Tillema (1995, 262) 
emphasise the part that scholarly knowledge can play in supporting development of 
practitioner knowledge when they argue that “from a cognitive point of view, 
professional knowledge is developed as a product of professional action, and it 
establishes itself through work and performance in the profession, not merely through 
accumulation of theoretical knowledge, but through the integration, tuning and 
restructuring of theoretical knowledge to the demands of practical situations and 
constraints”. In the epiSTEMe project to date, the translation into practice of ideas 
about dialogic teaching has provided an important focus for such development.  

Finally, during the first year of the epiSTEMe project, major shifts took place 
in national policy: notably, revision of the national curriculum to reduce 
prescriptiveness; abolition of compulsory national testing at lower-secondary level; 
abandonment of centrally-driven school improvement. These shifts reflected growing 
recognition that the gains in student achievement achievable through the improvement 
approaches and pedagogical models associated with the National Strategies had been 
largely exhausted, as well as increasing awareness that such gains had been at the 
expense of a marked decline in student attitudes towards mathematics and science, so 
emphasising the importance of teaching approaches that are effective in terms of 
affective as well as cognitive outcomes (see Ruthven submitted). These changes have 
created more favourable conditions for the dissemination and uptake of innovative 
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pedagogical approaches aimed at improving student engagement and learning, such as 
the one being developed and researched in the epiSTEMe project. 
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Enrichment and engagement in mathematics 

Sara Santos and Patrick Barmby 

The Royal Institution of Great Britain, London and Durham University  

In this paper we examine the notions of engagement and enrichment in 
mathematics. The Royal Institution of Great Britain (Ri) facilitates the 
Secondary Mathematics Masterclasses project and has been involved in a 
QCA project to follow teachers’ journeys when developing 'rich tasks' for 
use in school for whole class teaching, both with the aim of 'Engaging 
mathematics for all learners'. The Masterclasses were evaluated in 2008 
by the CEM centre in Durham, and the Ri conducted case studies for the 
QCA project on how ideas and methods traditionally reserved for the 
gifted and talented cohort can be used for a wider range of learners. 
Drawing on the results of these studies and the research literature, this 
paper will discuss what is understood by 'enrichment' and 'engagement' in 
mathematics. In clarifying what we mean by enrichment, we present a 
structure for enrichment which differentiates between the inputs and the 
outputs of any enrichment activity, engagement in mathematics being one 
of the desirable outputs. The findings show that the Ri masterclasses 
brought about the enrichment outputs we would expect from such 
activities, with additional outputs for the teachers involved. The Ri’s 
participation in the QCA project has aimed to build on this model in order 
to maximize such outputs. We explored the impact in teachers’ practice 
when developing rich tasks and the impact on learners. Based on our 
research, we put forward recommendations for carrying out enrichment 
activities in mathematics. 

Key words: enrichment, engagement 

Introduction 

The need for mathematical enrichment activities is highlighted by ongoing concerns 
over students’ attitudes towards the subject. Smith (2004) identified a perception by 
young people that mathematics was boring and irrelevant. He underlined this point by 
noting the 10% drop in the take-up of A-level mathematics in the 1990s, highlighting 
possible factors for this decline including the perceived poor quality of the teaching 
and learning experience, the perceived relative difficulty of the subject, the failure of 
the curriculum to excite interest and provide appropriate motivation, and the lack of 
awareness of the importance of mathematical skills for future career options and 
advancement. Despite a rise in recent years of students taking A-level mathematics, 
the numbers in 2007/08 were still about 6000 students down on the numbers taking 
the subject in 1990. In addition, the London Mathematical Society (1995) raised 
concerns in the past that students entering higher education lacked the necessary 
ability and skills that might be expected on university mathematics courses. 
Therefore, it would be hoped that mathematical enrichment programmes tackle these 
two problems of attitudes towards maths and students’ mathematical skills. 
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Enrichment in mathematics 

The question of what is meant by enrichment has been an ongoing question for 
researchers. Feng (2005) provides a useful summary and quotes Barbe (1960): “an 
aura of vagueness and confusion seems to surround the term”. Feng’s own conclusion 
is that “no overall consensus has yet been reached on the definition and nature of 
enrichment”. The phrases mathematical or analytical thinking and problem solving 
are also often used when attempting to define the term enrichment. These are 
discussed by Piggott (2004), and although she creates a model in which these terms 
are integral to a concept of mathematical enrichment, the difficulty still remains of 
defining just what is meant by these terms. Despite this difficulty, Feng (2006) put 
forward four ‘paradigmatic positions’ on enrichment in order to show the different 
types of mathematical enrichment activities: (1) Development of mathematical talent, 
including extending mathematical skills and heightening interest in the subject; (2) 
Popular contextualisation of the subject, including tackling negative stereotypes and 
deepening mathematical understanding; (3) Enhancement of mathematical learning 
processes, including developing learning skills; (4) Outreach to the mathematically 
underprivileged, including widening student access to mathematics. A point to note 
here is that these positions on enrichment detail the hoped-for outcomes to enrichment 
activities only – they do not in themselves define what constitutes enrichment 
activities. In developing our ideas on what enrichment is in the context of learning 
mathematics, a definition will be offered at the end of the paper. 
 

Engagement in mathematics 

In addition to trying to define ‘enrichment’, we can also clarify what is meant by 
engagement in mathematics, which is the overall aim of the enrichment tasks being 
considered in this paper. Engagement is important primarily because of its 
relationship with the academic achievement of learners (Peterson and Fennema 1985; 
Park 2005). Newmann et al. (1992, 12) defined engagement as “students’ 
psychological investment in and effort directed toward learning, understanding, or 
mastering the knowledge, skills, or crafts that academic work is intended to promote”. 
Past research (Fredericks et al. 2004; Kong et al. 2003) has highlighted three 
dimensions to engagement: behavioural, emotional/affective and cognitive. 
Behavioural engagement is about the active participation in learning activities, 
emotional engagement is the students’ attitudes (e.g. perceived value, interest in) 
towards the activities, and cognitive engagement can be seen as the ‘psychological 
investment’ mentioned previously. Meece et al. (1988) defined cognitive engagement 
in terms of students’ use of metacognitive and self-regulation strategies. Kong et al. 
(2003) found that approaches to learning (e.g. deep, surface) were closely related to 
cognitive engagement. Fredericks et al. (2004) included motivational goals and self-
regulated learning under cognitive engagement. Looking at Feng’s paradigmatic 
positions on enrichment, we can see that the notion of engagement in fact covers most 
of these positions – whether it is increasing interest or tackling negative stereotypes 
through attitudinal engagement, increasing participation in mathematics through 
behavioural engagement, or it is the enhancement of mathematical learning and 
development of understanding through cognitive engagement. Therefore, a key 
outcome from enrichment activities seems to be these different aspects of engagement 
in mathematics. 
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Evaluation of the Ri Secondary Mathematics Masterclass programme 

In 2008, the Royal Institution commissioned the Curriculum, Evaluation and 
Management (CEM) Centre to carry out the evaluation of their Secondary 
Mathematics Masterclass programme (Barmby et al. 2008). There were ten specific 
objectives for the masterclasses, which we categorised under the following areas of 
impact: (a) Attitudes towards mathematics; (b) Doing mathematics; (c) Participation 
in masterclasses; (d) CPD opportunities from masterclasses; (e) Facilitation of the 
masterclasses. The first three objectives again came under the notion of engagement 
and are hoped for outcomes. An additional outcome of CPD opportunities for teachers 
was identified, along with the aim of facilitating and developing the masterclasses 
over time. We describe an example of a masterclass (‘The Power of Two’) in the 
Appendix. In order to evaluate the programme therefore, and based on the previous 
discussions on enrichment and engagement in mathematics, we recognised the 
importance of differentiating between what can make up enrichment activities (one 
could say the input) and the desired outcomes from such activities (the output). In 
order to clarify our view of mathematical enrichment then, especially with regards to 
the Secondary Masterclasses, we put forward the following structure of the 
enrichment process: 

 
 

Figure 1: A structure for the mathematical enrichment process 
 
In the model, we specifically split up the inputs and outputs of mathematical 

enrichment. For example, we have provided an example characteristic of a possible 
enrichment activity, namely contextualising mathematics within pupils’ experience. 
Looking at the outputs, the evaluation clearly identified particular student outcomes 
from the Secondary Masterclasses, both from the quantitative results of a student 
questionnaire, and from qualitative interviews with students carried out during case 
study visits to masterclasses. The student questionnaire (see Appendix and also 
Barmby et al. 2008), completed by 917 students, produced the following key findings: 

• 64.2% of the students agreed or strongly agreed that their attitude towards 
mathematics had improved due to the masterclasses;  

• 69.6% of the students felt that their ability in mathematics had improved due 
to the masterclasses. 

• 59.3% of the students also agreed that the masterclasses had encouraged them 
to study maths in the future. 
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These findings correspond to the three components of engagement identified 

previously – namely attitude, cognitive (or the result of cognitive engagement) and 
behavioural. These specific outcomes were also highlighted in the interviews with 
students: 

“Masterclasses have made me like maths more and now if I’ve finished, Sir gives 
me more stuff to do from different books and things.” 

“When I was in primary, I didn’t really get it at all and after coming here I am 
really good at it.” 

“Yes, I’m more confident in maths now and I seem to enjoy it because I’d like to 
go on to a maths career when I’m older.” 

In addition to these outputs for students, some additional benefits to the 
masterclasses were identified as well, in particular benefits for teachers attending the 
masterclasses, especially in terms of professional development and providing 
materials that they could use in the classroom: 

“There are always plenty of ideas! We always come with a book and write things 
down and come back to school and try and use some of the things that we have 
picked up.” 

“What is really nice is the teachers coming, because they can then take it back to 
school. What my teachers in [town name] usually do is the two or three that have 
been, go back and teach the rest of the class. Not all the topic, but bits of the 
thing.”  

Having identified the important outputs from the programme, the next step 
was to identify why the masterclasses were perceived positively, and the evaluation 
highlighted three factors. The role of the activities was identified by the researchers 
during their visits to various masterclasses, where practical activities were seen to 
enthuse students and get them involved in ‘doing mathematics’. Activities were also 
highlighted by students in their interview comments. 

“I just like puzzles, sometimes in maths you just get told stuff or you just have to 
work out things, whereas in those ones you’re actually making things and doing 
things that are imaginative.” 

“You learn yourself through experimenting rather than just being told something.” 

“It is different methods and stuff and we put into practice Pythagoras’ theory and 
type of stuff. You cover it at school, but here you actually do it.” 

In addition to the activities being practical, the evaluation highlighted that the 
activities were different to what students were doing in school. 

“I think it is definitely more outside the box than addition and subtraction!”  

“I like maths, but I don’t enjoy it very much in school at the moment … I think it 
is just in school, you do not get much chance to learn something new, most of you 
are just going over the same things.” 

“Before this I didn’t think paper folding was maths, so it’s made me see that 
maths is more than just numbers and algebra. I have seen the wider side of 
maths.” 

Finally, the fact that the masterclasses had shown students the usefulness and 
importance of mathematics was highlighted. 

“I think they are good because they show you how maths is used in the real world. 
Used to solve problems.” 
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Case studies from the QCA engaging activities project 

The evaluation of the mathematics masterclasses above identified both benefits for 
students and teachers participating in the classes. In the project ‘Engaging 
mathematics for all’ led by the then QCA (now QCDA), one of the authors looked 
into how masterclass-type activities could be used in the classroom for a wider range 
of learners. We worked with two institutions; a very high-achieving girls’ state school 
and an all-boys technology college (perceived by the staff as a difficult school). We 
gathered written and oral statements, some of them on video, from both pupils and 
teachers. Other information came from observations carried out by one of the authors. 
We attempted to isolate here the characteristics of the developed tasks (inputs), the 
impact on learners (outputs) and teachers (additional outputs). The work on the case 
studies drew our attention to issues that require further research.  

Characteristics of the developed tasks (inputs) 

Teachers from both schools wished their pupils to think more deeply about what is 
learnt; make not just connections across the curriculum but between different areas of 
mathematics; and expand their comfort zone. Both welcomed hands-on activities; in 
the girls’ school the majority of the pupils could feel out of their depth when asked to 
put their knowledge into practice. The boys’ school identified kinaesthetic tasks as a 
way to engage their pupils and use the sense of achievement that comes from ‘making 
something’ as a way of creating a positive experience associated to mathematics (Le 
Roux and Santos 2009). Pupils worked on the mathematics underlying fashion design 
and architecture, connecting geometry with algebra. They studied representations of 
3D objects in 2D; Picks’ Theorem; perimeter and area through the story of Queen 
Dido of Carthage; stability of shapes; paper folding dodecahedra and buckyballs; 
links between fractions, algebra and paper folding through folding ‘perfect thirds’. 
Some visited central London’s architectural icons and interviewed a team of architects 
and designers. In some activities older pupils that had previously been taught the 
activity helped as classroom session leaders and mentors. For details see Le Roux and 
Santos (2009), Santos (2009), Teachers’ TV (2009) and Ri (2009). The accompanying 
videos ‘Cutting the cloth to fit’ and ‘The Gherkin shapes up’ can be found on the 
QCDA’s curriculum website http://curriculum.qcda.gov.uk.  

Impact on learners (outputs) 

Some impacts were observed by the teachers and by the researcher, whereas others 
were verbalised by the pupils involved. Although the collected accounts are few, the 
information gathered motivates a future research study. During the activities, pupils 
were on task, showed commitment, interest and effort, had a positive attitude in class 
and behaved well. The pupils engaged in conversations related to the work proposed; 
in lessons that were led by pupils, their response was positive with commitment and 
respect from both the mentees and the mentors. It was observed that the pupils 
actually did mathematics. The teachers summarised it as a ‘general buzz around the 
mathematics department’, that for the duration of the case study pupils manifested 
improved attitudes towards mathematics inside and outside the classroom, such as 
positive attitude while working, pride in their work, had fun and built confidence in 
their own abilities to tackle the tasks. Pupils felt challenged, made connections within 
mathematics and across subjects, claimed to think more deeply about the concepts 
involved, were able to improve their practical skills within the context of 
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mathematics. In the corridors several pupils asked the teachers about the mathematical 
paper folding work on display at the school entrance. Teachers from other subjects got 
interested in the project as a consequence of the displays. The younger pupils 
benefitted from being taught by their older peers as they felt more comfortable to ask 
questions. The older students explaining mathematics to younger ones benefited from 
having to think deeper about the concepts involved.  

Impact on teachers (additional outputs) 

The process of development, trialling and tailoring such activities in schools resulted 
in professional development for the teachers. From their reflections and from 
observations made by the researcher, the following specific benefits were identified: 
expansion of one’s comfort zone; coping with being challenged; understanding what 
it is to be a learner; feeling excited about mathematics and the teaching of it; feeling 
energised and motivated to change practice to incorporate more rich-tasks in everyday 
teaching; learning and doing mathematics; understanding the value of collaborative 
work as a teacher; building positive experiences to refer to in future. This work 
subsequently raises questions about engagement in teachers and not just the pupils. 
Can teachers provide their pupils with an engaging experience if they are not having 
regular engaging experiences in the subject? What constitutes engaging experiences 
for teachers and how do these translate into the classroom? These are issues to 
examine in future research activities. 

Discussion of the findings and implications for enrichment activities  

In looking at the literature on enrichment in mathematics, we identified the fact that 
the term ‘enrichment’ was actually difficult to define. What we did identify was that 
possible definitions were based on the hoped-for outcomes from enrichment activities. 
In fact, when we also examined the notion of ‘engagement’ in mathematics, what we 
found was that this largely described the outcomes we were looking for from 
enrichment. Therefore, based on our discussions in this paper, we propose a rather 
simplified definition of enrichment as simply activities that bring about engagement 
in mathematics. In this context then, we need to be clear about what we mean by 
engagement, and we have used the definition provided by the research (Fredericks et 
al. 2004; Kong et al. 2003) which includes the three strands of behavioural, 
emotional/affective and cognitive engagement. When we are considering enrichment 
activities then, we need to look for these three outcomes. Research has suggested that 
the first two components – behavioural and emotional/affective – may in fact be quite 
closely associated, with a person’s attitudes possibly predicting behaviour (Crano and 
Prislin 2006). However, we need to insure that the third component of cognitive 
engagement is present as well. We want students to ‘do mathematics’, to take part in 
mathematical thinking, to develop their knowledge and understanding of the subject, 
as well as simply taking part in activities and enjoying or being interested in them. 

In fact, from the two enrichment programmes that we have examined in this 
paper, we can see this broad coverage of the components of engagement from the 
enrichment activities. For example, in the engaging activities projects, although 
teachers did talk about ‘hands-on’ activities and kinaesthetic tasks, and also positive 
experiences, they also spoke about their wish for students to think more deeply about 
the mathematics. From the secondary mathematics masterclasses, we identified the 
importance of the activities themselves, rather than say the presenters of the 
masterclasses, or the facilities available to the students, as being the important factor 
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in whether students were engaged in mathematics.  Although the novelty and the 
usefulness of the mathematics were also positive issues that were raised by the 
students, in themselves, these would only perhaps impact on the affective and 
behavioural aspects of engagement. However, students also reported their cognitive 
engagement in the masterclasses, how the sessions promoted active thinking, ‘making 
them think’ and ‘keeping their brain going’, as they were encouraged to find solutions 
to problems and be engaged in harder mental work.  

I don’t feel like a master either! If I was a master I would get all the problems 
straight off! But it does make me think. It doesn’t make me think I am amazing, it 
makes me think how I can solve this.  

Therefore, when designing enrichment activities, it is important that all these 
components of engagement are catered for.  

This recommendation for enrichment brings us back to the view of enrichment 
put forward by Piggott (2004) where problem solving and mathematical thinking was 
integral to the enrichment process. Indeed, we emphasise once again that clarity is 
required in ensuring that cognitive engagement is an outcome of the enrichment 
process, whether that is achieved through problem solving activities or other open-
ended activities. We end with the following quote from Leone Burton (1984, 9):  

“Mathematics is used to solve useful problems; it can be played with in a creative 
way to see what can be discovered; it is the basis on which amusing puzzles can 
be invented; it has a great power to inform. But they are not the best reason. The 
greatest value of this approach is in the effect it has in the classroom.” 

In engaging students through enrichment activities in mathematics, the possible 
benefit is the impact on the learning and understanding of mathematics, over and 
above the enjoyment and participation of students. 
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Appendix - Questionnaire  

The questionnaire on the Masterclasses for pupils contained the following items: 
How I feel about the Masterclasses  
(five point scale of strongly agree, agree, neither agree nor disagree, disagree, strongly disagree) 
Example questions from the 20 items in this section included: 

1. I enjoyed the classes  
2. The masterclasses showed me the importance of mathematics  
3. Following the masterclasses, I now expect to do better in maths courses that I take 
4. have enjoyed the social side of the masterclasses 
5. learnt a lot of mathematics from the classes  
6. The masterclasses have encouraged me to study maths in the future 

 
Quality of the masterclasses 
(five point scale of excellent, very good, good, poor, very poor) 

1. Quality of the presenters and their presentations  
2. Quality of the activities you carried out during classes 
3. Quality of the facilities where the classes were held 

 
Possible impact of the masterclasses 
(five point scale of strongly agree, agree, neither agree nor disagree, disagree, strongly disagree) 

1. My attitude towards mathematics has improved due to the masterclasses 
2. My ability in mathematics has improved due to the masterclasses 

Appendix - ‘The Power of Two’ 

A mathematics masterclass is a two-and-a-half hour interactive session. The Power of 
Two is inspired in the Josephus problem: given a circle of n people where every 
alternate living person is killed in succession, where should one stand in order to be 
the last person to be killed and hence to survive? Through a mixture of pattern-
recognition, problem solving and group work, the challenge provides an informal and 
accessible introduction to number systems (in particular, place value and binary 
representation) and to the notion and importance of proof.  
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Saving Further Mathematics? 

Dr Jeff Searle 

 

Centre for Evaluation and Monitoring, Durham University 

The crisis in science, technology, engineering and mathematics (the STEM 
crisis) has come to the fore in recent years, but problems in mathematics 
education have persisted for many years. Although there have been many 
reviews and resulting initiatives none of the attempts to solve the problem 
has been successful in the long term. This paper reports on research 
carried out for Mathematics in Education and Industry (MEI) on the 
impact of the Further Mathematics Network (FMN), which was formed in 
2004 to attempt to halt and reverse the large decline in the numbers of 
students taking further mathematics at A-level. The origin of the FMN in 
the light of the STEM crisis and Curriculum 2000 is discussed, as is an 
analysis of the statistics on the subsequent growth in student numbers. 
This analysis highlighted two types of schools and colleges; those where 
numbers had grown substantially in recent years, and those where the 
institution was able to offer further mathematics despite a small take up.  
Interviews were conducted with the teacher responsible for Key Stage 5 
Mathematics in both these types of institution, and reasons sought for why 
numbers had grown or how courses could be offered “in house” to a small 
cohort of students. Factors that emerged included the reputation of the 
department and institution within its locality, the changes made in 2004 to 
mathematics specifications by the awarding bodies, flexibility in option 
block and timetabling arrangements, recognition by students that a 
qualification in further mathematics is a valuable career asset and support 
for the students and enthusiasm for mathematics from the teaching staff 
and the Network. These findings are discussed further in the light of the 
recent consultation on the future of level 3 Mathematics by QCA.  

Introduction and background 

There have been concerns for many years about the number of young people coming 
through the education system who are both suitably qualified and sufficiently 
motivated to study the subject beyond age 16 and into mathematics related higher 
education courses and careers. In the government enquiry into the decline in 
university entrants in science and technology, (Dainton, 1968) the report noted the 
importance of mathematics to a modern economy. Cockcroft (1982, paragraph 619) 
noted the shortage of good teachers of mathematics but that all pupils should be 
taught by teachers who are well qualified and enthusiastic. Despite several subsequent 
initiatives to engage and enthuse young people with mathematics a joint report by the 
London Mathematical Society, The Royal Statistical Society and the Institute of 
Mathematics and its Applications (1995) highlighted the persistent problem. 
 

There is an unprecedented concern amongst mathematicians, scientists and 
engineers in higher education about the mathematical preparedness of new 
undergraduates. There is also a long-standing worry about the number of 
prospective students in these disciplines. 
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Smith (2004, paragraph 0.3) in his inquiry into post 14 mathematics education, 
cites the Roberts Report (2002) that during the 1990s there had been a near 10% 
decline in the number of candidates taking A-level mathematics to about 60,700 in 
1999. Smith highlighted the importance of mathematics both as an intellectual 
discipline in its own right, but also as underpinning much of the scientific and 
industrial research essential to a modern economy. Smith identified a perception by 
young people that mathematics is boring and irrelevant, noting this and many other 
factors were influential in the decline in numbers. These factors included the 
perceived poor quality of the teaching and learning experience, the perceived relative 
difficulty of the subject, the failure of the curriculum to excite interest and provide 
appropriate motivation and the lack of awareness of the importance of mathematical 
skills for future career options and advancement.  

Porkess (2006, 2-5) in his review of recent changes in the structure and 
provision of A-level mathematics quoted more startling figures, with numbers taking 
A-level mathematics falling from about 85000 in 1989 to 66000 in 1993 and then to 
an all time low of about 50000 in 2002. Porkess highlighted a similar drop in numbers 
taking further mathematics A-level from about 15000 in 1980 to around 5000 in 2005. 
In further mathematics the perceived difficulty of the subject by 16 year olds was 
compounded by a shortage of teachers able to teach it and the disinclination of head 
teachers and college principals to staff it as a timetabled curriculum subject due to 
relatively small take up by students. In many schools and colleges further 
mathematics disappeared from the curriculum. The major revision to all A-level 
subjects in Curriculum 2000, accentuated the problem for further mathematics as part 
of the philosophy behind Curriculum 2000 was a broadening element to a sixth form 
student’s curriculum, whereas to take both mathematics and further mathematics at A-
level was seen by many to be narrowing.  

In this climate of a declining number of  students taking further mathemtics, in 
2000 the curriculum development organsiation,  Mathematics in Education and 
Industry (MEI) initiated its Enabling Access to to Further Mathematics Project.  The 
aim of the Project was to make further mathematics available to all sixth form 
students who could benefit from studying it irrespective of whether their school or 
college offered it in its curriculum. The Project also aimed to raise the general 
awareness of further mathematics as an AS-level and A-level subject amongst sixth 
form students as many might have been unaware of its existance let alone the benefits 
it had to offer to any student planning to study a mathematics related course at 
university. The Project began with four centres in England, where students could meet 
with each other and a personal tutor to discuss their progress in self-supported study 
using text books and web based resources  provided by MEI. These four centres 
would evolve to become the 46 centres of the Further Mathematics Network (FMN). 

The Smith Report (2004, paragraph 4.38) was instrumental in bringing about 
the FMN.  
 

Following the revision of the GCE criteria for Mathematics following the 
Curriculum 2000 debacle, many respondents are in no doubt that A-level 
mathematics has been made easier for the very best candidates. In terms of  the 
potentially most able mathematics students, the Inquiry believes that far too few 
able candidates are entered for AS or A-level Further Mathematics because their 
school or college do not have sufficient resources to provide these courses …. 
University departments in all subjects identified as vulnerable in the Roberts 
report would benefit greatly if more candidates were qualified at this level. 

The response by the DfES (2004, 43) initiated the formation of the FMN. 
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To encourage the increased take up of Further Mathematics we will also develop 
proposals to replicate and expand the current MEI Project with a view to 
establishing a Further Mathematics Centre in each of the 47 local Learning Skills 
Council areas. 

The setting up of the FMN by MEI can be seen as part of the response to what 
had become to be called the STEM crisis, where similar concerns to those in 
mathematics had been raised in science, technology and engineering as well. The 
STEM crisis and the responses to it were highlighted in the DfES/DTI report (2006), 
and again by Sainsbury (2007) in his review. 

The Centre for Evaluation and Monitoring at Durham University was 
commissioned by MEI, to monitor the development of the FMN and to evaluate its 
impact.  Part of the evaluation was to analyse the data on the take up and achievement 
in A-level and AS-level further mathematics during the development of the FMN. 

Data analysis 2003-04 to 2007-08 

The baseline year for the data analysis was taken as 2004 as that was the year in 
which the FMN formally started work, with funding provided by the DfES. The data 
on A and AS-level entries was derived from the National Pupil Database for Key 
Stage 5, made available by the DCSF. The figures in Tables 1 and 2 below represent 
the number of candidates that were awarded a grade, subdivided by gender.  
 
Table 1   Entries in A-level further mathematics 

A-level 2004 A-level 2006 A-level 2008 
female male total female male total female male total 
1418 3711 5129 1924 4598 6522 2605 5918 8523 
28% 72%  30% 70%  31% 69%  
Percentage increase on 2004 36% 24% 27% 84% 59% 66% 
 
Table 2   Entries in AS-level further mathematics 

AS-level 2004 AS-level 2006 AS-level 2008 
female male total female male total female male total 

897 1689 2586 1542 2533 4075 2021 3463 5485 
35% 65%  38% 62%  37% 63%  
Percentage increase on 2004 72% 50% 58% 125% 105% 112% 
 

It can be seen that growth in numbers has been substantial in both the A-level 
and the AS-level entries, the latter more than doubling over this 5-year period. A 
substantial number of the total entries achieved were at grade A, this being 58% for 
the A-level and 39% for the AS-level in 2008, with similar figures for the previous 
years.  It is notable that there are considerably more male entries than female entries; 
the male entry has constituted about 70% of the total entry for A-level and about 65% 
of the AS-level entry over the last few years. However, in terms of growth in numbers 
since 2004, it can be seen that proportionally more girls are being attracted into the 
subject than boys. Further analysis of the data showed that the growth in numbers was 
substantially in the state sector compared to the independent sector. Schools and 
colleges in the state sector accounted for 74% of the growth in A-level numbers 
between 2004 and 2008 with a corresponding figure of 90% for the AS-level. The 
growth in numbers represents a substantial influence of the work of the FMN.  

 
The FMN was set up to address the problem of students who could benefit 

from taking further mathematics but who could not access tuition. The FMN also 
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offered support to institutions with a small number of students but also encouraged 
student take up of the subject in general.  In the light of this we analysed cohort sizes 
from 2004 to 2008 to assess the impact of the FMN at institution level. This analysis 
is summarised in Table 3 and Table 4. 

 
Table 3   Cohort sizes in A-level further mathematics 

A-level 2004 A-level 2006 A-level 2008 
Cohort size Schools  

Colleges 
Students Cohort size Schools  

Colleges 
Students Cohort size Schools  

Colleges 
Students 

 1088 5129  1267 6522  1482 8523 
1 21% 5% 1 20% 4% 1 21% 4% 
5 or less 74% 42% 5 or less 69% 35% 5 or less 66% 29% 
10 or less 92% 69% 10 or less 90% 64% 10 or less 87% 58% 
15 or less 97% 83% 15 or less 95% 77% 15 or less 93% 70% 
30 or less  100% 100% 30 or less  99% 93% 30 or less  99% 91% 

 
Table 4   Cohort sizes in AS-level further mathematics 

AS-level 2004 AS-level 2006 AS-level 2008 
Cohort size Schools  

Colleges 
Students Cohort size Schools  

Colleges 
Students Cohort size Schools  

Colleges 
Students 

 933 2585  1109 4075  1319 5485 
1 45% 16% 1 34% 9% 1 34% 8% 
5 or less 89% 63% 5 or less 83% 49% 5 or less 78% 40% 
10 or less 98% 87% 10 or less 93% 71% 10 or less 93% 66% 
15 or less 99% 93% 15 or less 98% 85% 15 or less 97% 79% 
30 or less  100% 99% 30 or less  100% 96% 30 or less  99% 90% 

 
The data on changes in cohort sizes reflects the growth in student numbers 

over the time period as the cohorts have in general got larger. However many students 
are still studying in cohorts of 5 students or less but it notable that the number of 
institutions offering further mathematics has also shown a  substantial increase.   

The growth in entries as seen in Tables 1 and 2 and the cohort sizes as seen in 
Tables 3 and 4 raised two research questions. Firstly were there particular institutions 
where there had been a large growth in numbers in either A-level or AS-level entries, 
and if so could the factors that influenced this growth be identified. Secondly, where 
institutions had small entries but were teaching further mathematics “in house”, how 
was this being achieved. Telephone interviews were conducted, with the teacher 
responsible for Key Stage 5 Mathematics, usually the Head of Department (HoD), to 
investigate these questions.  

Interviews with Heads of Department on growth in student numbers 

In May 2008 approaches were made to the HoD at 40 institutions where growth had 
been identified between 2005 and 2007, asking to interview them.  The criterion for 
selection was that an institution had entered 5 or fewer students in 2005 and 10 or 
more in 2007 at either A-level or AS-level in further mathematics.  This criterion was 
met by 32 institutions at A-level and by 39 at AS-level. The sample drawn from these 
institutions included comprehensive schools, state grammar schools, post 16 colleges 
and independent schools. The criterion chosen was arbitrary in the sense that other 
criteria would have identified other institutions, but was considered adequate to gather 
HoD’s views on why growth had occurred in their school or college. The response 
rate was 9/20 for the A-level (45%) and 13 /20 for the AS-level (65%). HoDs were 
asked to comment on both A-level and AS-level. The five main factors identified as 
leading to growth were as follows. 
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1  The reputation of the school and department in the locality. 

If a department has built up a reputation for providing good quality teaching that leads 
to good results at A-level, it attracts students. It was apparent that once further 
mathematics became established, it attracted students.  Some HoDs had started by 
offering the subject as extra curriculum using a post 4:00 pm slot or a sports afternoon 
to make time available for lessons. With growing interest and success, senior 
management had eventually allowed further mathematics onto the timetable.  The 
commitment of the HoD was notable here, particularly those who had been 
appointment fairly recently, in wanting to offer further mathematics to their students.    

2 The changes made in 2004 to the mathematics specifications  

Many HoDs noted that further mathematics had become accessible to a much greater 
range of students due to the changes in the specifications in mathematics modules 
introduced in 2004.  Some departments are now able to offer a 9 module course in 
mathematics, in which students aim for both A-level mathematics and AS-level 
further mathematics within one class over a two year period. In some schools and 
colleges where numbers made it possible, there was considerable flexibility in that 
students were able to continue to the full further mathematics A-level if they wished 
to or drop back to just mainstream mathematics. Most HoDs noted that the 2004 
changes had done much to dispel the image of further mathematics as difficult and 
demanding and thus only for the most able. In this context some HoDs raised fears 
about changes that may be made again to the modular structure in 2012 in that 
changes could result in similar problems to those that followed  Curriculum 2000, and 
numbers in A-level mathematics and further mathematics could plummet again just as 
they are becoming re-established and growing steadily. 

3 Changes to timetable and option block structure  

Most post-16 institutions which offer A-levels operate a timetable based on option 
blocks.  In some schools and colleges the popularity of mathematics has grown to 
where it appeared in several option blocks, and if numbers warranted it, further 
mathematics would also be an option with an intention that those students who study 
both would take at least 12 modules. Again the flexibility of the modular structure of 
mathematics and further mathematics was stressed in meeting particular student’s 
needs. Some HoDs had struggled to get further mathematics onto the timetable, and it 
was apparent that the attitude of the senior management to further mathematics was 
essential to this. Often, where numbers had grown and senior management gave full 
support to the development of further mathematics, a member of the team was a 
mathematician or scientist. Senior management in general endorsed further 
mathematics once it was seen to be bringing success to the school or college, as seen 
in the examination results. 

4 Recognition that a qualification in further mathematics is a career asset 

Many HoDs spoke of a growing enthusiasm for mathematics in their institution, 
which is probably related to enrichment type activities. It was reported that many 
students went on to study mathematics related degree courses in higher education, 
such as engineering, computer science and economics. Students were coming to see 
the value of studying further mathematics, at least to AS-level, as being an asset on 
their application forms, and also of being of benefit to their studies once their degree 
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course had begun.  Some HoDs had introduced further mathematics because they had 
students who were asking to study it.  

5 Support and a general enthusiasm from the teaching staff for mathematics. 

Many of the HoDs noted they were fortunate in that their staff were largely well 
qualified in mathematics. Most staff were involved in supporting students in some 
way. For A-level study, this often involved a “drop-in clinic”, or a specified time 
when staff would be available for help with any problems. Some HoDs had 
introduced mentoring systems, in which older students helped younger ones. Nearly 
all HoDs spoke enthusiastically of the involvement of their staff and students in the 
UKMT Challenges, at junior, intermediate and senior level and face-to-face team 
competitions. Some HoDs spoke of their aim to make mathematics both challenging 
and fun. Thus from Year 7 onwards, they would have extra-curricula activities like 
puzzle solving, or they would extend the mathematics curriculum through for 
example, GCSE statistics  or Free Standing Mathematics Qualifications (FSMQ) in 
Year 11. Opinion was split as to whether it was a beneficial idea to introduce the AS-
level mathematics core work in Year 11. Some thought this gave students an insight 
into sixth form study and a helping start, whilst others thought it premature and better 
to pursue other aspects of mathematics.  However, all departments were active in 
encouraging suitable Year 11 students to continue their study of mathematics after 
GCSE, often involving talks from external speakers on the importance of mathematics 
and the career opportunities a qualification in mathematics can bring. 

No HoD put the development of further mathematics down specifically to the 
FMN. However, most commented that they thought the Network was important and 
they valued it, noting it was doing a good job in raising the profile of mathematics.  

Interviews with Heads of Mathematics Departments concerning “in-house” 
teaching of further mathematics to small cohorts of students 

Towards the end of 2008, the FMN identified schools and colleges in the Network 
where a decision had been taken to teach at least some of the further mathematics 
modules themselves in 2008/09 despite having relatively small numbers of students, 
rather than using FMN tutors. In total, 52 such schools and colleges were identified of 
which a sample was contacted for interview. Interviews were conducted during 
January 2009 with the teacher responsible for Key Stage 5 Mathematics in 33 of these 
institutions, covering a wide range of types of school and colleges and most areas of 
England. The main points arising from the interviews are as follows. 

1 Managing provision in further mathematics 

Most HoDs had persuaded their senior management that further mathematics should 
be in the sixth form option blocks and given timetabled time. However, this was 
rarely a full allocation of teaching time. Typically well established subjects would 
have 5 hours, whereas further mathematics would be allowed 2 or 3 hours. This was 
often said to be adequate for a small group of able and committed students; in some 
institutions the time was supplemented with voluntary extra time.  Some senior 
managers supported further mathematics as it brought kudos to their institution and as 
such, was a good marketing tool in both attracting and retaining able students. 

There is an apparent difficulty for HoDs as to when students actually begin 
their study of further mathematics. For some it is only offered as an AS-level course 
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in Year 13, whereas others “parallel run it” with the main mathematics course in both 
year groups. These are the extremes of many flexible arrangements that allow 
students to go as far in mathematics as they want to. The main problem encountered is 
the pre-requisite knowledge required for some of the further mathematics, particularly 
in the pure mathematics but it was said able students can cope with this.  Some 
believed only high calibre students could successfully begin further mathematics at 
the start of Year 12. It was noted that for students who wish to take extra modules 
beyond examination requirements, funding is not available to cover any teaching.  

2 Involvement with the Further Mathematics Network 

All these institutions were registered with the FMN and were to some extent in 
contact with their local Centre Manager, even if this meant just receiving information 
through e mail. Some HoDs had appreciated the help and advice they had received 
from the local Centre Manager in initiating further mathematics, some saying they 
had found it invaluable. Many made use of the MEI online resources and encouraged 
their students to attend revision and enrichment events. Students who had attended 
such events had largely found them enjoyable and useful; they particularly liked 
meeting with students from other institutions. However, other commitments often 
prevented attendance. The timing of these events was raised by many as an issue and 
some noted small local events might be preferable to large regional events. 

3 Mathematics in the institution as a whole 

In general the HoDs considered the attitude of pupils and students in their institution 
to be positive towards mathematics particularly amongst the more able. In all schools 
there was some sort of enrichment in the mathematics programmes for all year 
groups. Involvement in the UKMT Maths Challenge and Team competitions was 
common and also in some more local competitions. Pupils clearly enjoyed taking part 
of in these. Many schools had “maths days” or similar in which pupils would solve 
puzzles or be given “real world” problems.  External visits, or visitors to the school, 
were occasionally organised, with Maths Inspiration and Murderous Maths being 
mention by several HoDs. Pupils in Year 11 who had shown an aptitude for 
mathematics were encouraged to consider taking further mathematics. All schools and 
colleges had at least some members of the department who are well qualified in 
mathematics and able to teach mathematics at A-level and at least some of the further 
mathematics modules.  Many noted the need for Continuing Professional 
Development (CPD) in this respect, particularly for younger members of staff, and 
noted the need for further development of online provision of CPD. 

Discussion 

It was clear from the interviews that the FMN has provided far more that just support 
for students. Enrichment events and revision sessions provided by the FMN on most 
A-level mathematics modules, especially the pure core, are valued. Enrichment events 
are aimed at inspiring both sixth form and younger students, particularly in Years 10 
and 11, from whom the next cohorts of AS and A-level students of mathematics and 
further mathematics will come. These events often take place in the local university 
letting young students experience this environment for the first time and also to see a 
presentation by a professional mathematician. If the numbers taking mathematics and 
STEM related courses at A-level and in higher education are to grow then it is 
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essential to engender interest and enthusiasm for mathematics prior to age 16. The 
FMN enrichment events contribute substantially to that aim.   

It was also clear from the interviews that one of the main reasons for attracting 
students to further mathematics was the flexibility of the current arrangement in 
which some modules can count towards either mathematics or further mathematics.  
Many institutions have used creative timetabling in which Year 12 and 13 students 
can study some modules together. If this flexibility were to be removed as was 
proposed in the QCA consultation on A-level provision in 2009, then there could be 
dire consequences for the number of students taking further mathematics. It is notable 
that some professional bodies, such as The Royal Statistical Society and MEI, wrote a 
position paper in response to the consultation, proposing there be no change. Many of 
the issues involved have been discussed in the Institute of Mathematics and its 
Applications publication, Mathematics Today. (2009). At the time of writing the 
outcome of the QCA consultation is not known, but the research reported here shows 
the post 2004 specifications have been instrumental in creating the growth in student 
numbers and it would seem sensible to leave the current arrangements alone. Any 
substantial change could have a detrimental affect on future student numbers.   
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A Student’s Symbolic and Hesitant Understanding of Introductory Calculus  
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In this paper I discuss a study that looked at one student’s understanding 
of calculus, and used the framework of Tall’s theory of Three Worlds of 
Mathematics to determine the embodied and symbolic nature of that 
understanding. Initially, the student’s understanding of calculus was 
explored through a task interview using calculus questions designed to 
elicit embodied and/or symbolic understanding. Results showed that this 
student predominantly demonstrated a symbolic understanding, with a 
very limited embodied understanding on the particular tasks. It was also 
during this interview that the student exhibited the phenomenon of 
searching for reassurance as to whether he was answering the task and 
interview questions correctly. This paper discusses this search for 
reassurance, speculates on potential causes, and argues that there may be a 
relationship between this search for reassurance and the student’s 
symbolic understanding of calculus.  

Keywords: reassurance, calculus, symbolic understanding, didactic 
contract, institutional norms, three worlds of mathematics  

Introduction 

The research presented in this paper was part of a study that sought to explore the 
experience of a first year undergraduate calculus student and how that student’s 
experience in calculus may have contributed to his symbolic (algebraic procedural) 
understanding and/or his embodied (physical or geometric) understanding, of 
calculus, and particularly the connections between these understandings. This initial 
question was examined with regard to a portion of a particular philosophical theory, 
namely Tall’s three worlds of mathematics. The data for this study were collected 
from a clinical task and reflection interview with one university student who had 
recently completed a first year calculus course. The purpose of the interview was to 
examine the understanding the student demonstrated on calculus tasks and how the 
student spoke about his understanding and experience in introductory calculus. 
During the clinical interview, an unexpected phenomenon appeared: the student’s 
need for reassurance that he was correct. This was surprising, as the student in this 
study had completed introductory calculus with over a 90% average and thus, it was 
assumed that the student was confident with calculus. This paper will begin by briefly 
describing the study as well as summarise the results. I will then discuss the student’s 
need for reassurance that appeared during the clinical interview. In the conclusions of 
this paper, I will hypothesise some reasons why the student in this study, as well as 
other students in general, may feel the need to look for reassurance about how they 
are doing their mathematics.  
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Background 

I developed the research problem of this study from a combination of my own 
experience as a mathematics student, tutor and instructor as well as an examination of 
Tall’s philosophical theory of three worlds of mathematics (Tall 2003, 2004a, b). This 
philosophical theory suggests that all types of mathematics can be divided into one of 
three domains, or worlds: the Conceptual-Embodied world, the Symbolic-Proceptual 
world, or the Formal-Axiomatic world. The Conceptual-Embodied world involves a 
combination of Bruner’s Enactive and Iconic modes of representation (Bruner 1966; 
Tall 2003). According to Bruner, the Enactive mode of representation signifies an 
action or actions while the Iconic mode of representation is attributed to all visual or 
image organisation. Thus, Tall’s Conceptual-Embodied world of mathematics is a 
combination of actions on organised visual or image representations of the 
mathematical world (Tall 2003). The Symbolic-Proceptual world is a combination of 
processes and concepts acting together, or procepts, which utilise the formal symbolic 
systems such as arithmetic, algebra, or, in the case of this study, symbolic calculus. 
The Formal-Axiomatic world uses logical deductions, formal definitions, and axioms 
to construct axiomatic mathematical systems, such as analysis or field theory. For the 
purposes of this paper, I will refer to the Conceptual-Embodied world as the 
embodied and the Symbolic-Proceptual world as the symbolic for the sake of brevity.  

Tall’s theory has been applied to many areas of mathematics. For example, 
one study used Tall’s theory to investigate university students’ embodied and 
symbolic understanding of a specific concept within linear algebra (Stewart and 
Thomas 2006). Similar to my own investigation, these researchers focused on 
individual student’s understanding within the explicit worlds. Their findings conclude 
that developing an understanding of the connections between the embodied and 
symbolic world can contribute to overall success. Nogueira de Lima and Tall (2006) 
used the theory of the three worlds to try to explain 15-16 year old students’ 
misunderstandings and difficulties with learning the concept of equations. Similar to 
the previously mentioned study, Nogueira de Lima and Tall also concluded that 
developing a connection between the embodied world and the symbolic world can 
contribute to a better understanding of the concepts.  

 For my study, Tall’s theory, and particularly his descriptions of the different 
worlds of mathematics, was applied to the participant’s answers on introductory 
calculus tasks. This was intended to analyse the different worlds the student’s answers 
could be categorised in to see if there was a cross over between worlds in the 
questions. From my experience, a traditional first year undergraduate calculus class 
focuses on the graphical ideas of rate of change and cumulative growth and the use of 
the rules of differentiation and integration for symbolic manipulation. This was also 
the case for the course the student in the study took. Thus, I made the assumption, 
which Tall’s theory supports, that there was the potential for a different understanding 
of the embodied and symbolic worlds in calculus. I then wanted to explore how the 
experiences of a student could potentially contribute to the different understandings. 
That is, if a student experienced mathematics as either mostly from the symbolic 
world or from the embodied, or a combination of the two, would this correlate to the 
understanding the student developed? The Formal-Axiomatic world was not included 
in the study since it was not a significant part of the introductory calculus course that 
the participant had taken. 
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The Problem 
 

For this study I wanted to know if there was something about an individual’s 
experience that contributed to his or her developed understanding of the mathematics, 
as categorised by Tall’s worlds of mathematics (Tall 2003, 2004a, b). I chose to 
position this study within the context of a first year undergraduate calculus classi1 
since calculus is required by numerous undergraduate programs, and is one of the 
most commonly taught mathematics courses at university. For example, at one 
university in Canada, undergraduate programs in Mathematics, Physics, 
Commerce/Business, Economics, Engineering, Health Science, General Science, and 
Environmental Science all require students to complete a course in calculus. Thus, 
because of the volume of students who are required to take calculus, studying how 
students’ experience contributes to how they develop their understanding could be 
informative to educators. Thus, the research question for this study was: ‘How does a 
particular student’s experience in a calculus course contribute to his development of a 
symbolic and/or embodied understanding of the mathematics that was taught?’ 

I chose to begin my investigation by looking at only one student’s experience, 
as this was a pilot study to test the interview task questions. My participant for this 
study was not chosen at random as I knew Andre prior to the study. Andre had hired 
me as a private tutor to help him through some pre-university mathematics classes. 
Despite this connection, I had no contact with Andre in any capacity while he was 
completing his university calculus course and felt that our prior connections would 
not bias the data. 

I designed the initial research study after the clinical interview techniques for 
mathematical thinking outlined by Ginsburg (1981). Ginsburg recommends three 
clinical interview techniques for mathematics education research. These include a 
discovery technique, which is aimed at discovering the cognitive processes actually 
used by the individual in a variety of different contexts, an identification technique, 
which is aimed at identifying the describing the intellectual phenomena that are 
discovered, and a competence technique that is aimed to establish competence, not 
just performance. For this study, my interview with Andre was a combination of 
Ginsburg’s discovery and identification mathematical clinical interview techniques. I 
designed 10 open-ended mathematical tasks to be completed by Andre during our 
interview for the discovery portion (partially reproduced in Figure 1). These tasks 
were designed so that they could be answered both in a symbolic and/or embodied 
way, in an attempt to try to comprehend the understanding that related to the 
processes that Andre was using. A professor in Mathematics Education with calculus 
experience reviewed and agreed with me about the design of the tasks. The interview 
also consisted of a series of semi-structured questions about Andre’s calculus class 
and his previous experiences in mathematics.  

Once Andre had attempted all of the tasks, I engaged him in a reflection about 
the tasks. I prompted him to speak about how his previous experiences in 
mathematics, and specifically in calculus class, contributed to how he completed the 
tasks. At all points when I was with Andre, I made written notes of comments Andre 
made that I deemed important. The semi-structured reflection interview was audio-
recorded. Further to my field notes and the audio recording, I collected the paper that 
Andre used when solving the mathematics tasks in order to have a written record of 
his problem-solving steps. After the interview was completed, my written notes and 
                                                
1 Henceforth, when calculus is mentioned, it refers to first year introductory undergraduate calculus, 
unless otherwise stated. 
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the interview transcripts were thoroughly read, analysed, and coded according to 
themes that emerged. I initially analysed the data for signs of Andre’s embodied or 
symbolic understanding of the calculus concepts in terms of Tall’s descriptions of 
these worlds (2003, 2004a, b). For example, I looked for physical drawings or graphs 
to demonstrate an embodied understanding and I looked for symbolic manipulation 
and algorithms for a symbolic understanding, to name a few, as well as any 
combination of these and other processes Andre may have used. I then examined how 
this related to how he spoke about his experience. 
 
 2) For the function f (whose graph shown) arrange the following numbers in  
 increasing order and explain your answer: 0, 1, f’(2), f’(3), f’(5), f’’(5) 

 
 
 
        
 
 
 
 
 
 
 
 4) At what point on the ellipse x2 + 2y2 = 1 does the tangent line have a slope 
  of 1? Show your work and explain your answer. 
  5) What is meant by “rate of change” in terms of calculus? 
   9) If w’(t) is the rate of growth of a child in pounds per year, what does  
 

€ 

w'(t)dt
5

10
∫  represent? Explain your answer. 

 10) If f(x) is the slope of a trial at a distance of x miles from the start of a  
 trail, what does

€ 

f (x)dx
3

5
∫  represent? Explain your answer. 

 
Figure 1: Example of Calculus tasks  
 
Results 
To summarise, the results showed that Andre demonstrated a very strong symbolic 
understanding of calculus but not a solid embodied understanding. He had a dominant 
tendency to want a procedure when solving different types of calculus tasks and 
avoided the use of graphical representations to help in the solving process.  

A good example of Andre’s symbolic understanding of calculus occurred 
when he was trying to complete the second question of the tasks (Figure 1). This 
question showed a randomly drawn curve. Andre began the task by first wanting to 
identify the function equation of the curve and decided that the function was actually 
f(x) = sin(x). When I asked Andre why he first wanted to make the curve a sine curve 
he reported it was: “Because I am probably used to calculating the derivatives and 
integrals, so I was thinking that what was the derivative of a sine function or cosine 
function and I tried to see what it would look like...” This response shows that Andre 
was inclined to gravitate towards what he described as calculating when it came to 
calculus questions.  
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The desire to ‘calculate’ in the questions continued throughout the entire time 
Andre completed the tasks. When questioned about why he wanted to find procedures 
or calculations for the tasks, Andre said he was not taught any theory about the 
mathematics, but that he was only given the formulas and then used them to do 
example after example. He also said that the examples were very similar to what 
would then be on the tests, so that’s what he learned. Thus, the way in which Andre 
described his experience in calculus showed an emphasis in the teaching on what Tall 
would categorise as a symbolic understanding of mathematics (Tall 2003, 2004a, b).  

Another example that suggests Andre’s strong symbolic understanding had to 
do with sketching the curve of functions. When I asked Andre what he found easiest 
in calculus, he stated curve sketching and said that was because “you are given an 
easy function to trace, you follow your steps...”. Andre then explained to me the 
procedural steps he would follow to sketch a curve. During the explanation, Andre 
mentioned using a grid method to record the answers. Interestingly, this grid method 
has nothing to do with the mathematics, but could be described as a socio-
mathematical norm (Yackel and Cobb 1996). Thus, from his initial comment and 
further explanation, including the mention of the grid, I concluded that to Andre, 
’easy’ means a step-by-step process to follow, or procedures, which usually take place 
in the symbolic world of mathematics.  

Despite Andre’s overwhelming tendency to respond to calculus from a 
symbolic understanding, he did have a selected understanding of calculus as it related 
to the embodied world. For example, on question 2, once it was clarified for Andre 
that he was looking at an arbitrary curve, he was able to solve the question by visually 
representing the different slopes. When I asked him what he looked for when solving 
this question he said “slopes” and commented on placing them in order according to 
how much they increased in steepness. Likewise, with question 5, when I probed 
Andre to explain what he meant by variation in his definition of rate of change he said 
he meant that he would look between two x values and see how much y has changed 
in that period. Although this is not a perfectly clear answer, it shows that Andre is still 
thinking about rate of change or slope as something he can physically see as well as 
calculate. Overall, from the interview, I concluded that the understanding Andre 
demonstrated was related to his experience in how mathematics was taught to him. 
Andre stated that calculus was taught focusing on the procedures and practicing 
examples using the procedures. Taking this into consideration and the fact that 
procedures in introductory calculus tend to involve the symbolic world, it is not 
surprising that symbolic procedures are mostly what Andre learned from the class.  

Need for Reassurance within a Symbolic Understanding 

It was during the analysis that another theme appeared. This was Andre’s tendency to 
show a need for reassurance that he was doing the tasks correctly or answering 
questions correctly, such as hesitating on questions to ask me if he was answering 
correctly. In this section I will summarise my findings in conjunction with the 
theoretical framework of Sierpinska’s that focuses on a similar theme, namely the 
student’s need for the teacher to tell them if they are correct (2007). Throughout the 
summary, I will demonstrate how Andre’s responses can be situated inside this 
framework and suggest that this need for reassurance can also be linked to Andre’s 
symbolic understanding. 

Sierpinska’s findings were similar to my own in that the participants of her 
study demonstrated and expressed a need for reassurance from their instructor (2007). 
Sierpinska speculates that this need for reassurance, or for the teacher to tell the 
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student if they are correct, could be attributed to epistemological, cognitive, affective, 
didactic, and/or institutional reasons (2007). Reviewing Andre’s responses, I would 
categorise his need for reassurance into specifically institutional and didactic reasons, 
but there could most likely be affective reasons as well.  

Andre demonstrated a need for reassurance, which could be attributed to 
institutional rules and norms, while solving task question #4 (Figure 1). While 
attempting this question Andre stopped midway through, drew a smiling face, and 
went on to the next question. This was surprising since Andre was actually solving the 
problem in a correct manner. When questioned as to why he stopped, Andre said, 
“Because I wasn’t really sure…since we didn’t have the word implicit (referring to 
implicit differentiation) I didn’t know if I was supposed to do that.” This speaks to the 
convention Andre was taught in class – to only solve a particular way if primed by a 
particular word. Since that word was not present, Andre was not sure about his action 
and thus stopped trying to solve the task question altogether. This example speaks to 
his need of reassurance not just from the instructor, but from his prior experience with 
calculus questions. In other words, Andre had experienced reassurance when taking 
calculus in that when he saw the words ‘implicit differentiation’, then he felt 
reassured that he was supposed to solve the question in a particular way. Andre’s 
experience of needing a priming word in the question is an example of an institutional 
norm that somehow became viewed by Andre as necessary for mathematical validity. 
This example also gives support to the results discussed earlier that Andre has a 
strong symbolic understanding of calculus. With a symbolic understanding, Andre is 
comfortable with questions that require step-by-step procedures for solving. Andre 
had most like developed his understanding in the way Siepinska described, as 
“justified on the basis of their acceptability by the school authorities, not on their 
grounding in an explicit mathematical theory” (2007 16). Andre demonstrated here 
that one of the steps he required for solving question like #4, which was based on his 
experience with acceptable school authorities, was to see the word ‘implicit’ written 
within the question. Sierpinska suggests the reassurance phenomenon could exist 
because of the institutional rules and norms that students are taught, which equate to 
mathematical validity. This reassurance can also be attributed to some of the 
procedures used in solving calculus problems. In class, a particular step-by-step 
procedure might be taught as the only right way to solve a problem, even if it is only 
conventions set by the instructor.  

Andre also demonstrated a need for reassurance that could be linked to the 
didactic perspective. When I asked Andre why he had solved task question #9 a 
certain way and particularly why he sketched the area under the curve, which 
happened to be a correct way for solving the question, Andre got a little upset and 
stated “Umm, because that’s what I think it was...Okay, I’m a little bit confused.” 
This example shows that when I asked Andre to justify why he solved something in a 
particular way, he claimed to become confused. I speculate that he was not 
necessarily confused but started to question his answer and lose his confidence when I 
asked him to explain what he had done. On further probing it became clear that he 
thought I was only asking him because he had not solved the question correctly, 
which was not the case. From the didactic perspective, Sierpinska suggests that in 
mathematics, the teacher gives the task and it is the student’s job to produce an 
answer. According to this model, Sierpinska claims, “the teacher is assumed to know 
the correct answer” (2007 15). There is also the suggestion by Sierpinska that there 
are many tasks in school mathematics where it may be impossible or difficult for the 
student to verify the answer. This example demonstrates Andre’s understanding of the 
didactic perspective between instructor and student, that is, that the instructor holds 
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the answers. This example also makes me wonder about the understanding Andre has 
of the role of questioning in mathematics. Andre lacked the confidence to explain and 
argue for his method of solving this particular task. Instead, he needed to be reassured 
that questioning how and why he solved a task in a certain way was not an indication 
that he had done anything incorrectly. This lack of confidence again may be linked to 
Andre’s symbolic understanding. Since Andre had learned the mathematics as step-
by-step symbolic procedures, he lacked the knowledge of why he was doing particular 
steps and only knew that it was part of the process. I questioned Andre as to where he 
learned to draw a curve and shade the area underneath to represent integration. He 
said it was something the teacher always did before he solved the question. Thus, 
Andre was mimicking a process he experience in class without understanding why it 
was significant. 

There were also numerous times throughout the interview when we were 
discussing what he had done when Andre would pause during an explanation and ask 
“Right?”, “Correct?”, or “Do you know what I mean?” The frequency of these pauses 
for reassurance was such that it was very noticeable and made me conclude that 
Andre was either not confident in what he was doing or expected me to reassure him 
throughout the interview. As was mentioned earlier, Andre had received the highest 
grade possible in his calculus course and thus, I assumed he would have developed 
some level of confidence when attempting calculus questions. These verbal pauses for 
reassurance make me wonder if Andre completed his calculus course with a lack of 
confidence. Conversely, it may be the case that Andre’s didactic expectations were for 
me to confirm this processes while he was solving. 

According to Sierpinska, one of the affective reasons for a student’s need for 
reassurance may come from the certain words that are used in mathematical 
discourse. In particular, according to Sierpinska, mathematical discourse uses the 
terms ‘right’ and ’wrong’ instead of ‘true’ and ’false’, the latter of which are more 
appropriate in mathematics. Sierpinska suggests that the words ‘right’ and ’wrong’ are 
“emotionally laden, especially when uttered in relation with a student’s work” (2007 
13). Thus, students desire to hear that their work is ‘right’, as that has positive 
emotional connotations as well as connects to the notion that there is one right way to 
do things, which is a symbolic/procedural view.  

Although I did not ask Andre directly how he emotionally felt about the 
questions, I did notice and recorded a lot of apprehension when he was not sure if he 
was correct. Likewise, one of the reasons Andre may have stopped solving task 
question #4 may have been that he did not want to lose morale in the case he was 
proceeding incorrectly, as well as the lack of the priming words ‘implicit 
differentiation’. This may also have been why Andre continued to ask me for 
reassurance that he was answering the questions correctly. Similar to the other 
potential reasons already mentioned, Andre’s emotional need for reassurance may 
also be supported by his symbolic understanding. Without a strong embodied 
understanding of the mathematics, which provides the knowledge that allows students 
to develop an understanding of the justification of the procedures they take, students 
may look for positive reinforcement that they are proceeding correctly as they have no 
other indicators available to them.  

Conclusion 

Overall, it was unforeseen that Andre would exhibit throughout the interview a need 
for reassurance that he was answering the mathematics task questions and/or the 
interview questions correctly. Now, after examining the need for reassurance in 
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relation to Andre’s strong symbolic understanding, there seems to be strong links 
between the two. More specifically, it seems that the symbolic understanding, based 
on step-by-step procedures for solving mathematics problems, may also lead to 
students’ feeling hesitant about mathematics. 

I believe it would be beneficial to further explore this phenomenon of a need 
for reassurance in mathematics and, in particular, if this phenomenon occurs more 
often in individuals who demonstrate strong symbolic understandings of mathematics. 
At the same time I had at one point been Andre’s tutor and part of me wonders if 
Andre looking for reassurance from me comes from the fact that he still sees me as a 
teacher when we are discussing mathematics. This might play a role, but I believe that 
it has more to do with a combination of the reasons discussed in Sierpinska’s (2007) 
research as well as his developed symbolic understanding of calculus. Thus, my 
concluding hypothesis is that there is a link between a student’s symbolic 
understanding and demonstrating a need for reassurance.  In future research, I would 
like to investigate on a larger scale whether it is mostly students who demonstrate a 
symbolic understanding that search for reassurance. This study could potentially 
produce significant results that could speak to classroom practices.  
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Conceptualising the mediation of mathematics in classrooms as textured 
narratives 

Geoff Wake and Birgit Pepin 

University of Manchester, UK & Høgskolen i Sør-Trøndelag, Norway 

This paper builds on a framework that conceptualises mathematics 
teachers as narrators developing narratives that interweave two important 
strands that we identify as being focused on the mathematical and social. 
It is these narratives that we consider to mediate the mathematics for 
students in classrooms that in turn we consider as activity systems and 
analyse using Cultural Historical Activity Theory. We draw on case study 
data collected in the ethnographic tradition in colleges as part of a project 
funded as part of the ESRC Teaching Learning Research Programme 
(TLRP) to consider how implicit in such narratives are socially emergent 
and shared understandings of what constitutes mathematics itself and what 
it might mean to be a mathematician in different settings. Giving a texture 
to teachers’ narratives, therefore, we identify factors relating to shared 
epistemologies and didactical contracts (Brousseau, 1997) that we find 
crucially important in defining what it means to study mathematics as a 
discipline. 

Keywords: Pedagogy, Narrative; Cultural Historical Activity Theory 

Introduction 

The UK’s Economic and Social Research Council funded research project, ‘Keeping 
open the door to mathematically demanding courses in Further and Higher Education’ 
involved both case study research investigating classroom cultures and pedagogic 
practices and individual students’ narratives of identity together with quantitative 
analysis of measures of value added to learning outcomes in an attempt to investigate 
the effectiveness of two different programmes of AS mathematics for post-16 
students.  Here we focus on the classroom experiences of students drawing on data 
that was collected in the ethnographic tradition with video and audio recordings, 
photographs and researcher notes together with follow-up interviews with students 
both in small groups and individually and pre- and post- lesson interviews with the 
teachers involved.  

In doing so we aim to problematise the often held assumption that there is only 
‘one story’ to be told in mathematics teaching, and in mathematics classrooms. 
Instead, we propose ‘teaching as narrating’ as a way of participating in an activity 
system (e.g. Engström, 1999) such as a classroom. In this paper, we address a specific 
aspect of this system - the means by which teachers engage students with, and 
mediate mathematics through, their ‘mathematical story’. We develop a framework to 
explore how teachers have their own particular ‘stories’ to tell, their particular ways 
of facilitating student participation, and consequently a particular process of 
‘negotiating’ (or directing) what it means to ‘do mathematics’. However, we also 
suggest that these individual narrations reflect aspects relating to epistemologies and 
didactical contracts that have historically evolved and are culturally bound and 
situated. 
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Perspectives/theoretical framework 

In our analysis of classroom pedagogic practices in an attempt to understand the 
social construction of mathematics that we observed, we turned to the construct of 
“narrative”, in the sense of Ricouer (1984), and as developed in educational settings 
by Bruner (1996) and others. We, therefore, conceptualise the teacher as “narrator” 
revealing a mathematical plot whilst drawing on a range of pedagogic practices in an 
attempt to engage his or her audience in different ways.  We suggest that teachers in 
operationalising their actions therefore develop different narrative constructions that 
can be considered as an interweaving of two different strands:  

• a mathematical strand, which is often in effect the development of a 
mathematical argument, and 

• a social strand which comprises of social activities (which arise from the 
teacher’s choice of pedagogic practices) and social discourse. (see fig.1). 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 1: Schema illustrating two dimensional framework used to analyse the narrative of mathematics 
lessons 

 
We build upon this two dimensional framework drawing on Cultural 

Historical Activity Theory to identify key factors that we suggest mediate teachers’ 
developing narratives giving additional texture in ways that implicitly define what it 
means to study mathematics in a particular setting, and indeed to define what 
mathematics “is” in this setting. 

We conceptualise, therefore, the classroom interactions as nested within an 
evolving systems network, in which teacher and students are mutually constituted 
through the course of their interactions. The notion of close relationship between 
social processes and developing knowledge draws on the work of post-Vygotskian 
Cultural Historical Activity Theory (CHAT) (see e.g. Cole (1995), Engeström (1999) 
etc.), and it is fundamental to Lave and Wenger’s (1991) social practice theory which 
emphasises the notions of “community of practice” and collective knowledge that 
may emerge within the spaces people share and within which they participate.  

Figure 2 provides a useful conceptual schema for identifying the factors that 
mediate the actions of a community in relation to the object of its activity (in the case 
of the AS mathematics classroom taken to be the learning of mathematics). The top 
triangle draws attention to the “instruments” such as texts, notes, examination 
questions, teacher exposition, and so on that mediate the individual student’s learning. 

 1            2  3              4 

Mathematical strand 
e.g. making posters 

e.g matching representations 

e.g. whole class discussion Pedagogic 
practices 

Social discourse 

Narrative of the lesson 

Social strand 
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The lower part of the diagram considers the classroom community more widely. Here, 
how teacher and student roles are constituted giving rise to a division of labour of the 
learning community and “rules’ both implicit and explicit are taken into account. We 
find, for example, that rules pertaining to examinations and students’ performance in 
these can drive teachers’ actions in classrooms and result in offering particular 
cultural models of what it means to “do mathematics”. For example, we note teachers 
aligning themselves with students in a joint battle with the examinations as teachers 
talk of “they” in relation to those who set the assessment papers. 

We will return to attempt to understand how these particular factors are 
powerful in helping shape a teacher’s narratives after describing the basis of our 
narrative framework in a little more detail with reference to an example lesson from 
one of our case studies. The particular lesson to which we refer here should not be 
considered as typical, as it certainly reflects the individual style of the particular 
teacher / narrator who is central. However, as you will see it does illustrate aspects of 
what we might consider a normative script (Wierzbicka, 1999) of lessons at A Level. 
 

 

 

 

 

 

 

 

 

 

Figure 2: Cultural-historical activity theory schema 

The narratives of a lesson 

This lesson is in the first term of the GCE AS “Pure” course in a college in the North 
of England: it focuses on applications of differentiation. In the introductory phase of 
the lesson the teacher initially drew attention to differentiation as the abstract idea of 

rate of change of y with respect to x referring to the notation .  To illustrate that 

this might be applied to a “real” situation and that different variables other than x and 
y might be involved the teacher suggests that at issue might be the rate of change of 
velocity with respect to time, and went on to ask if anyone knows the “special name” 
for this particular rate of change as the only question in the first ten minutes of the 
lesson.   

Perhaps the transmission style the teacher employed is encapsulated in his 
statement at this point of the lesson that, “we just need a couple of definitions before 
we can move on to what I wanted to look at in detail today.” 

He drew a non-specific/general curved line and emphasised that the gradient at 
a specific point is given by the differential of the function introducing appropriate 
notation f(x) and .  At this point he introduced the “new stuff” – the average 
gradient, or gradient of the chord, between two points (A and B) on the curve, 
although he did suggest that this idea had been met by the group when differentiation 
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was first introduced. Here he re-emphasised that the gradient at a point is found using 

differentiation, , and average gradient between two points is found using the 

gradient of a chord, and he introduced the notation   . 

Following this the lesson moved to a second phase in which the teacher 
modelled how to answer a problem of a form that the students would practise in the 
final stage of the lesson.  However, at this point of the lesson the teacher introduced a 
‘social’ strand of narrative that from this point interweaves, more or less closely, with 
the mathematical narrative.  This revolved around an imagined world in which the 
teacher developed a problem situation based on the worms in his garden: as you will 
see this is not a ‘real’ context but perhaps is ‘realisable’ as in the RME approach (see 
for example, Van den Heuvel-Panhuizen (2001)).  As this extract of the transcript of 
the lesson demonstrates this strand of the teacher’s narrative with which he expects 
the students to engage is not insubstantial. 

“So I went into my garden, true story this, and I started digging up some worms.  
Alright?  So I took my fork and I dug up lots of worms and they were all of 
different sizes so that’s quite interesting in the first place.  So I thought, well, I 
wonder if there’s any relation between the age of these worms and their length so 
I collected as many worms as I had time for.  For the visual learners amongst you, 
here’s one of them.  This is, in fact, it’s Japanese.  Could be German.  Who 
knows?  Ok, this is one of the worms I collected.  So I collected till I’d got 
enough, a decent sample size, right?  And I measured these worms, how long they 
were.  I then asked them how old they were. They were quite co-operative.  And I 
plotted how long the worms were at particular ages and, to my surprise, and 
remember you’re not making notes, this is background, to my surprise, when I 
plotted the age of the worm to its length, all the points roughly lay on what looks 
to me like a quadratic so, of course, as you yourselves, I got quite excited at that 
and I thought, well, if I could find the equation of that quadratic, I’m quids in, 
yeah?  I could predict the length of worms at different ages that I didn’t have so I 
got very excited.  I also noticed that when the worm wasn’t born its age was zero 
so that was spot on, that fits nicely, so I do know one point that lies on this 
potential quadratic, quadratic with a negative coefficient of the squared term.” 

With brief reference to techniques that students had met previously of fitting a 
quadratic curve to model data such as this the teacher went on to introduce the 

equation   that he claimed to have found for a curve that fits his imaginary 

data of worm length, l millimeters, at time, t years.  The first part of the problem that 
he set was to find the rate of growth of these worms in the first year of their lives 
which he immediately translated this applied problem for the students into the more 
abstract mathematical form of having to calculate “delta l” by “delta t”.  He proceeded 
to demonstrate how to find the average gradient by firstly finding l when and then 

proceeding to calculate the increase in l  divided by the increase in t (ie 1).  

After brief comment by the teacher that a rate of growth of
 

millimetres per year 

was, “Quite a lot really” the teacher repeated the procedure carrying out all of the 
calculations at each stage to find the average rate of growth during the fourth year.  In 
conclusion of this phase of the lesson the teacher “discussed”, by asking questions 
that he answered, the validity of the answers he had found so far: 

“Has the result surprised you or not?  7.5 millimeters per year in the first year, 4.5 
millimeters per year in year 3 to year 4.  Does that make sense that a worm grows 
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really quickly at first and then starts slowing down its growth rate?  That seems 
sensible to me, I think we do the same.  Obviously, I’m still growing but…ok.” 

In what may, due to the shift in the mathematics involved, be considered a 
third phase of the lesson the teacher posed the question,  

“What is the rate of growth after 3 years?  Not, “what is the average rate of 
growth?”  Exactly, on the worm’s third birthday - at that instant, what is its rate of 
growth?”   

Again in this phase the teacher modelled how to find an answer by 
differentiating the function   and substituting t = 3 to give a rate of 
change of 5 millimetres per year.  Again the teacher asked the class to consider the 
likely validity of this answer by comparing it with the average rates of change he had 
found for the first and third years of the worm’s life. 

In a fourth phase of the lesson the teacher posed the question, “How many 
years before the worm is fully grown?”  After suggesting that the students should 
think about this in terms of the rate of change of the length of the worm a student 
made the second intervention of the lesson suggesting that this is at a stationary point.  
Re-interpreting this, the teacher pointed out,  

“In other words, the gradient is zero.  When the worm is now fully grown, it’s no 
longer growing so the rate of change of the length with respect to time is zero.” 

He proceeded to demonstrate that in this case t = 8, and once again considered 
this in the light of the context of the situation, re-introducing a social element of 
narrative: 

“Now, I hope there aren’t any biologists here who are going to tell me that worms 
don’t live to 8 years old.  They do in my garden, they wouldn’t lie to me.  I asked 
them and they said they were honest about their age.  So 8 years is when they stop 
growing.  They’re not dead.  They just stop growing.” 

Due to space restrictions we leave the lesson here at a point just before the 
lesson entered a penultimate phase in which students practised answering questions 
with a similar form to the example considered by the teacher (without the worms!). 

Analysis and further theoretical development 

In this particular lesson the teacher demonstrates the use of the two distinct strands of 
mathematical and “social” narrative and interweaves these: at times using the ‘social’ 
narrative to motivate, and at other times ensuring it intersects relatively closely with 
the mathematics in such a way that engagement with the social requires engagement 
with the mathematical.  For example, consider how the teacher’s social and 
mathematical narratives are closely aligned as he discusses how to find when a worm 
is fully grown with students thinking about growth mathematically (considering the 
maximum point of the quadratic function) and socially (the teacher emphasises that in 
this context the function would suggest that the worms would be shrinking and that 
“we can’t have that for worms”.) We suggest that the stories the teacher spins about 
his garden worms require more attention than just focusing on the ‘social’: the 
mathematical is at times intricately interwoven with this. Equally sharing the worm 
story is also a central element of this teacher’s dual goal (engagement with, as well as 
learning, mathematics) directed action: he wants his students to connect to the worm 
story in order to learn about the mathematics as well as providing a memorable 
‘event’.  
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As may be apparent from this extract here this particular lesson had relatively 
little variation in pedagogic practice, with the teacher in the main choosing to use a 
predominant transmission style for long stretches with the only interruption being a 
substantial period in which students practised the techniques that the teacher had 
modelled.  This resulted in a long period of passive activity for the students followed 
by a period in which they were more actively engaged but on the whole working 
individually: the result was little or no sociability throughout the lesson. To explore 
the students’ experiences further a CHAT analysis can be captured by the schema of 
fig.2. This draws attention to key mediational issues regarding informal rules such as 
those that have developed to determine how students are expected to be passively 
engaged (!) and the resulting division of labour.  

In our CHAT analyses of different lessons, therefore, we note that different 
teachers operationalise their actions by delivering their own unique interweaving of 
mathematical and social strands in their narratives.  On the one hand the mathematical 
strand is driven by the mathematical argument that the teacher wants to present and 
reflects the way in which the teacher understands how mathematical ideas and 
processes familiar to his or her students may be (re-) introduced and interconnected to 
develop new (to the students) mathematics.  Whilst on the other hand, the social 
strand contains references to ‘why’ as the teacher draws on a range of experiences, 
practices and discourse with which he or she attempts to motivate and engage his or 
her students in learning. 

For any individual teacher their uniquely constructed narratives are dependent 
to a large extent on their knowledge (content knowledge, pedagogic content 
knowledge, and knowledge of students), beliefs and the environment (school, 
department, programme) in which they operate. We suggest that the social system in 
which teachers operate, therefore, gives an overall feel or texture that whilst all-
pervasive is perhaps consequently less visible than the narrative strands we have 
discussed thus far. So far we have not referred explicitly to this but merely hinted at 
how aspects of teachers’ narratives give a flavour of the world in which they are 
situated. CHAT draws our attention particularly to the implicit and explicit rules of 
the college / classroom activity system that help develop this texture and we suggest 
that these combine and are pervasive across all aspects of the teacher’s narrative. 
Consequently this texture, we suggest, encapsulates the teacher’s operationalisation of 
cultural expectations which we consider as normative and particular to different 
educational phases in relation to studying mathematics. Particularly important in this 
regard we draw attention to the key elements of cultural expectations in relation to 
phase specific epistemologies and didactical contracts. To unwrap this a little we 
suggest that in the A Level mathematics classrooms that we explored there is a 
normative epistemology that persists across individual teachers and which reflects 
curriculum specifications and the way these are mediated by texts and assessment. 
This in turn pervades teacher’s narratives and builds lesson by lesson, week by week 
and term by term to enculturate students into what it means to be a mathematics 
practitioner in this particular setting. For example, we note the highly procedural 
nature of student’s working that stems from text books that “bite sizes” mathematics 
into manageable rules and procedures that we suggest inhibits deep understanding. In 
our observations of student working the procedural approach was stark but perhaps 
not surprising if students’ long term contact with mathematical narratives reflects the 
type of transmissionist and disconnected teaching that our project found.  

We therefore suggest that teacher / student classroom interactions can be 
analysed using a frame that considers mathematical and social strands of narrative that 
is textured by normative expectations regarding teaching, learning and values. Our 
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own use of such narrative analysis of classroom pedagogy in combination with CHAT 
suggests the mathematics education community and policy makers should widen the 
debate to include further deliberation about how a range of mediating factors interact 
to determine the mathematical experiences of learners.  

As our project demonstrates teacher’s narratives are immensely powerful in 
shaping learners’ identities in relation to mathematics and consequently their 
likelihood of continued engagement with the subject. 
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In the Changes in Mathematics Teaching Project1 three mathematics 
departments made autonomous changes to their practice in KS3. We 
chronicled aspects of their practice, tracked a focus sample of students, 
and obtained KS3 results for the cohort. This paper reports characteristics 
of the department activity and identifies common features and difficulties 
which may be associated with the effects of the changes. 

Keywords: collaborative practice; teacher change; low attaining students; 
subject departments 

Introduction   

This paper reports on the common characteristics of three secondary mathematics 
departments making deliberate changes to the ways they taught, with the intention of 
improving the learning of previously low attaining students (PLAS) – that is those 
who scored at or below a low level 4 in KS2 SATs – during KS3. These changes led 
in two cases to significant increases in test results for the whole cohort at KS3, and in 
the third case to sustaining previous levels while other core subjects declined. Several 
aspects of their work were analysed to identify features that may have contributed to 
this success. This study is a contribution to knowledge of how mathematics 
departments can act as self-developing subject communities. They also had at times to 
resist some attempts by senior management teams to impose other practices on the 
teachers. It is also worth noting that they were not involved in specific development 
projects such as lesson study. 

What is special about mathematics departments? 

School subject departments operate in similar ways for many purposes as social and 
learning communities (Hodkinson & Hodkinson, 2005), whatever the subject, but we 
might expect them also to be distinguishable through characteristic epistemic cultures 
(Knorr-Cetina, 1999). They would also be distinctive in ways which relate to current 
issues in school mathematics teaching in England: shortage of teachers; high turnover 
of teachers; pressure for results because schools are compared using mathematics test 
results; a high political focus; inherent cognitive and emotional difficulties in learning 
the subject; and a larger body of research about learning maths than for many 
subjects. The departments on which this paper is based were also distinctive in being 
subjects of research. One head of department told us: ‘we kept going because we 
knew you were coming in and would ask what we had been doing’, and on another 
occasion: ‘it’s good to talk to someone outside about what we are doing.’ 
                                                
1 Funded by the Esmee Fairbairn Foundation, grant ED 05-1638.  Views expressed in this paper are 
those of the researchers and not of the Foundation. 
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The study 

All three schools contacted us separately to tell us what they were doing because they 
had been influenced by an earlier project (Watson and De Geest, 2005). Our decision 
to research their changes was thus opportunistic. The approach taken was non-
interventional, and ethnographic in that we watched and listened and asked people 
about what was going on in their practice. The research team collected data from four 
main sources: 
• interviews, observations and video of teachers and heads of department  
• observation of some department and other meetings and inservice events 
• interviews with a sample of previously low attaining students (PLAS) 
• data, materials, tests and marks, pertaining to the whole cohort. 

The changes that were made were initiated by the departments or at least by the heads 
of departments. They all focused on the cohort that started year 7 in 2005, and they all 
introduced new schemes of work, new ways of teaching and all-attainment groupings 
for that cohort. The grouping decision was taken for three different reasons: for 
timetabling expediency, for an equitable ‘fresh start’ for everyone, and for the 
opportunity for teachers to work as a team with parallel groups. One school (SP) 
continued to teach all-attainment groups in year 8 while others introduced loose 
setting with highest and lowest attaining students in separate sets. All schools used 
setting for year 9. Research comparing mathematics teaching using different 
groupings is always confounded by related changes in teaching, but in this study the 
approaches to teaching which were developed for all-attainment groups were mostly, 
but not totally, sustained throughout all three years in various forms.  

From the last two data sources we learnt that PLAS developed and maintained 
a positive approach to mathematics lessons and their own achievement on the whole 
throughout the three years. Also test scores for PLAS were significantly higher than 
previous years in two schools (SP and LS), but not in the other. Overall for the whole 
cohort, test scores at KS3 improved significantly in two schools and were maintained 
in the third against a background of falling scores across the other core subjects (FH)1. 
The combination of the test scores, the significant improvement for PLAS in two 
schools, and the reported positive attitudes make it worth knowing more about the 
departments’ work. This paper relates to findings from the first two data sources.  

Analysis 

We interviewed consenting teachers up to three times during the study. Those who 
taught the cohort every year were interviewed three times, but due to staff changes 
and deployment decisions several teachers were only interviewed once or twice. The 
qualitative data collected from semi-structured interviews about their practice, their 
teaching and how the departments worked were analysed using a frame devised from 
activity theory in which each teacher’s responses were sorted according to whether 
they were about how the department activity, or about classroom activity. The activity 
theory perspective focuses primarily on the role of tools in shaping and being shaped 
by the object of the collaborative work, the improved learning of PLAS, and is also 
concerned with the roles and authorities within the system. It derives from a view of 
human collective activity in which systems inevitably contain contradictions which 
give rise to adaptations in the system. The work of the system is divided among 
                                                
1 More details can be found on www.cmtp.cp.uk 
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individuals and coordinated in the community to achieve shared goals. Individual 
variations are either subsumed or they contribute to contradictions1.  

For both department and classroom activity, utterances were further sorted 
according to whether they referred to the purposes of the activity, the people, the tools 
and other mediating mechanisms that brought about that object, how the community 
operated in terms of its members, rules, expectations, and how tasks were carried out. 
Thus for each teacher we had one, two or three sets of data about departments and 
classrooms that could be collated with other teachers. Where we had two or more 
years’ of interviews we could also look for changes in what individual teachers talked 
about. Other qualitative data from observations of meetings were analysed under 
similar headings and added to the overall picture of departments emerging from the 
sorted data, and also to our own observational knowledge of what changed during the 
three years. Space is too limited to expand on this process here2. Here we further 
synthesise the data to identify overarching characteristics and difficulties. Our use of 
the analytical triangle derived from Engestrom (1998) follows its application to 
school mathematics departments by Venkatakrishnan (2005). She described the 
activity of a department acting under imposed change using the triangle to show how 
the department and its local authority systems, while apparently using the same tools, 
appropriated them in different ways. 

Describing the departments’ work 

In our interviews teachers often talked about connections between the features of their 
work which are usually represented by the vertices and midpoints in Figure 1. Some 
of these connections were about individual actions, such as interpretation of tool use, 
or individual planning, while others expressed how external pressures can constrain 
the nature of these connections, such as the assessment regime constraining the object 
– students’ improved learning – in ways that were nothing to do with the department 
system. There were similarities in teachers’ talk about individual actions and 
influences and we saw this as a kind of shadow overlaid onto the triangle giving 
meaning to the lines. Thus we could include in the diagram the fact that individuals 
are driven by their interpretations, yet these both shape and are shaped by the system 
within which they work. The labels on the links in Figure 1 indicate that most teachers 
talked about their relation with tools as communication and creation; that individual 
decisions affect the way they enact the object; that their position in the department 
affects the work they do; the importance of personal professionalism; their 
responsibility to the school and parents; and relations between various regimes and 
autonomy.  

Changes in object, tools, expectations and labour 

In this section we describe common changes during the study which we synthesised 
by comparing departments over time. The shared object of the work of the 
departments and the classrooms was to improve mathematics learning of PLAS, but 
the nature of this learning was described differently at different times during the 
project. At the start, the object was usually described as ‘develop mathematical 
thinking, make mathematics fun, help them believe they can learn maths’ but towards 
the end of the first year the majority of teachers added comments such as ‘help them 
                                                
1 There is not space here to give a more detailed account of activity theory, see Jaworski & Potari 
(2009) for a thorough account applied to the work of mathematics teaching. 
2 We have written elsewhere about this analytical process (Beswick, Watson & De Geest 2007). 
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be confident about the basics’ to their descriptions. Later still, some teachers from all 
schools were also talking about ‘working on key ideas’. These shifts of focus in the 
object were reported to us, sometimes as if they were dissenting views, but we learnt 
from our the discussions at department meetings that all schools did, to some extent, 
pay more specific attention to arithmetical understanding about half way through the 
project than they had at the start. These changes of expression of the object then 
generated changes of expectations and the nature and use of tools. 
 

 
 

Figure 1: The activity of mathematics departments making autonomous changes to practice 
 

Figure 1: The activity of mathematics departments making autonomous changes to practice 
 
 In school LS a day-long end of year review of year 7 work focused on the 

need to give students more experience of questions that required multi-staged 
reasoning, and also to shift teachers’ discussions from task selection and design to 
thinking about what students were expected to learn. They believed that they had by 
then established ways of working and thinking as classroom norms and now, 
maintaining those norms, needed to move away from the ‘how’ and think harder 
about the ‘what’. A similar but less explicit shift took place in the other two schools 
and we noticed that this was combined with a shift away from using open-ended 
exploratory tasks from published materials towards internal development of resources 
with specific curriculum foci, and attention to language, examples and methods that 
might be taught and learnt through teacher-generated tasks. At the start of the project, 
therefore, the shared tools were mainly published materials promulgating open-ended 
approaches, but teachers individually and collectively shifted the object to include 
learning specific mathematical ideas. This shift was supported by, and also 
influenced, changes in what teachers regarded as their resources, so that the 
knowledge of the community was treated as the main resource, and the action of 
communicating and developing that knowledge became the main activity of the 
department, rather than being caught up rules and expectations about who should 
produce what and ‘put it in the resources file’. When we analysed the division of 
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labour in the department, we were initially ourselves caught up in stories about what 
was supposed to happen rather than what did happen, so we perceived these stories as 
‘rules’ or, rather, ‘expectations’ within which teachers worked, while in practice they 
did other kinds of sharing. The category ‘expectations’ arose during analysis because 
these were internally-generated pragmatic understandings about roles, but recognition 
of pressure on teachers’ time in school meant that all HoDs were good humoured 
about whether these were achieved or not.  

Department meetings had a multiple function, attendance being part of the 
overarching rule-structure for teachers, but they acted as a keystone for the 
community, holding other aspects of activity in balance with each other. They also 
functioned as a kind of resource, being the forum for discussion and dissemination 
that was available for all teachers, even those who were not always around for 
informal interaction. Meetings with others, and other people’s knowledge, came to be 
used as major tools for change, whereas typical mathematics department resource 
banks were the ordinary tools for maintaining teaching. 

All the innovations were seen, to various extents at various times, to be in 
conflict with senior management teams, the inspectorate, beliefs about ‘what we are 
supposed to do’, students’ previous experiences of mathematics teaching, parents, and 
also with the views of a small minority of teachers. These ‘outsiders’ could exert 
influence through rules, through their position embracing the department in a wider 
community, and through the tools they provided for teachers to use.  

Common practices 

By about the middle of the second year these changes had become embedded for most 
teachers. For all schools the approach to planning was internally prescriptive, but 
different in nature to the scheme of work set out in the National Strategy. For 
example, SP developed a module of work on logical reasoning, while LS agreed a 
school-wide approach to teaching equations, starting with the balance metaphor, 
which would permeate all their teaching. Mostly, teams were united together in seeing 
their practice as in conflict with ‘the strategy’ or ‘the framework’ because in year 7 at 
least, and to some extent in other years, attention was more on developing 
mathematical behaviour by spending extended time on core mathematical ideas using 
a variety of short and long tasks than on coverage of a number of specific topics.  

There were other common features which, from our experience, might 
distinguish these departments from some others: 
• The focus on the study cohort was made explicit at certain times which were 

ring-fenced in various ways; for example, extra department meetings, inservice 
days devoted to planning for the cohort, major meeting agenda items 

• All departments undertook overtly critical use of official documents; in two 
schools new teachers were enculturated into critical professionalism; in the 
third a core group of experienced teachers were already critical professionals 

• All departments focused on key ideas in mathematics and/or mathematical 
thinking (albeit defined in different ways by different teachers) 

• All departments had a culture of frequent informal discussions about teaching 
mathematics – whether they had a dedicated subject staffroom or not. 

• Small teams created, collated and disseminated resources.  
• All departments provided protected timetabled time for co-planning where 

possible, and all used email prolifically. 
• Departments shifted from talking about tasks and activities as if they would 

somehow ‘deliver’ learning to developing focused teaching approaches  
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• The presence of new teachers was seen as important to stimulate talk 
• Planning cohered around discussion of parallel groups and also vertical 

planning, so that students’ experience would be coherent year-on-year 
• Nearly all teachers were willing to abandon their own past approaches in order 

to have coherence throughout the school 
• All departments included core members who overtly learnt together 
• Several members of each team were well-informed, read professional literature 

and sought research-based approaches to teaching 
It is clear from this list that most of the teachers had a strong commitment to 

the shared aim, and also to some extent saw themselves as ‘against’ some outside 
authority. There was also a levelisation of teachers’ roles in relation to the study 
cohort, in that the emphasis was on shared development of teaching and contribution 
was seen in relation to the time one was willing to spend on the work rather than on 
qualifications and experience.  

Formal meetings were carefully planned by HoDs. Departments discussed 
particular mathematical topics in depth at these meetings, and often this would 
include sharing ideas about what the important features were and how they related to 
other topics. All departments did mathematics together, and this promoted pedagogic 
discussion best when the shared focus was on classroom tasks rather than on 
mathematics for personal professional development. Such discussions often revealed 
different perceptions of the subject matter. Teachers would often review recent 
teaching and revise approaches for the future, and these discussions also revealed 
different perceptions of the subject matter. Meetings were not used as a conduit for 
management information. Organisational and information matters were dealt with by 
email or informally, not generally in meetings. The teamwork, internal networking, 
collaboration and use of knowledge from outside networking which took place in the 
departments appeared to have arisen because of the nature of the department 
meetings, which were collegial and professional rather than managerial and coercive. 

Critical difficulties and differences 

School SP had the most stable team, the most stable student population, maintained 
all-attainment grouping for longer, and had the least disagreement among teachers. 
This was the school which had the strongest sharing of ideological commitment to the 
methods adopted, and also in which the head of department took the strongest critical 
stance towards external imposition. It also had the highest increase in test scores and 
was the only school to make a statistically significant difference for the weakest of the 
PLAS. While this confirms the central importance of belief in raising achievement for 
PLAS (see Watson and De Geest, 2005), this school also had by far the lowest 
previous test score level, so had more room for test scores to rise.  

School FH had the least stable team, including a change of head of department 
after the first year. In practice, the department changed its focus from the study cohort 
to the subsequent cohort, so that the maintenance of test scores when compared to 
falls in other core subjects, while being a great achievement, was not due to a strong 
department focus after year 7. From teacher reports we think that input in year 7, 
followed by a spread of new practices to all years could have contributed. Another 
feature is that of the three schools this one had the highest scores before the study, and 
hence the least space for improvement.  

In all schools there had been dissent among some teachers at the start of the 
project, but in SP dissent evaporated, with teachers self-reporting their changes of 
mind. In LS we could not learn much about dissent because the dissenting teachers 
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had not agreed to participate in the study. In FH we learnt more about dissent because 
it was overtly expressed to us as covert disagreements with HoDs. There were two 
main issues that emerged from our observations: leadership style and marginalisation 
of teachers.  

The heads of department took various roles during the study in relation to their 
departments: overt change agent, inspirer-leader, presenter, participant, listener, tea 
and cake provider, and learner. The first kind of leadership appeared to generate most 
dissent and obstruction, while the other kinds appeared to be accepted and understood. 
Of course, all HoDs were change-agents and managers, but their role in formal and 
informal discussions tended to be more as team players. In one case, the HoD 
genuinely asked a less experienced colleague to help her sort out her management of 
one class. We noticed that the team participated more in discussion of mathematics 
when leaders took the role of listener and learner and others presented the 
mathematical tasks to be undertaken. HoDs would often ask colleagues to prepare 
tasks or brief talks and presentations for meetings. There were also times in all 
schools when an HoD or other teacher would present an inspiring insight or 
observation from research or reading.  

When teams work as closely and coherently as these did, the difference 
between core members and marginalised members becomes very marked. We were 
able to identify four kinds of marginalisation, which may overlap:  
• Institutional: teachers who have other roles in school, only teach mathematics 

for part of the time, and hence are not around for informal discussions and may 
not attend all formal meetings 

• Ideological: teachers who have reasoned differences with the department policy 
and voice this either in meetings or outside meetings; they may or may not act 
out department policy and are unlikely to use available tools for change 

• Epistemological: teachers who have a different view of mathematics and may 
not understand some of the public discussions about mathematics learning  

• Self-imposed: teachers who choose not to take part in informal interactions or 
other opportunities for team membership; they may or may not attempt to act 
out department policy and are unlikely to use available tools for change 
Non-specialist teachers are not necessarily marginalised nor are marginalised 

teachers necessarily non-specialist. Differences between specialist and non-specialist 
teachers are indicated by our lesson observation data outside the scope of this paper.  

Differences among teachers were not discussed explicitly in departments. For 
example, teachers were reluctant to challenge each other about mathematical 
knowledge. This means that some teachers continue with limited or sometimes 
incorrect mathematical ideas even when working among strong mathematical 
colleagues. Heads of department who display their own need to learn openly seem 
most likely to generate helpful talk about mathematics. Teachers were also reluctant, 
but less so, to challenge assumptions about limitations of students’ capabilities in 
relation to hard mathematical ideas. We witnessed one meeting in which a teacher 
talked of her class being able to tackle complex tasks but other teachers, who taught 
parallel groups, claiming that theirs could not be helped to do so. There seemed to be 
no mechanism in the discussion to examine these differences. At other times, teachers 
appeared to be conversing about similar issues but when we listened to audio 
recordings we noticed that some teachers talked about how students think while others 
talked of what they will know, and some teachers anticipated what students might 
learn while others talked only of what they will do – yet conversation continued as if 
there was shared meaning. 
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In FH, after the cohort was reorganised into sets in year 8, one group with the 
lowest prior attainment was taught by a teacher who exhibited characteristics of three 
kinds of marginalisation. The teaching methods were not in accord with department 
ideas and agreements. The decision to staff lowest attaining groups with marginalised 
teachers is often forced on HoDs by school constraints, and is likely to continue, 
however a core teacher took the group over for year 9. The relevant sample students 
exhibited a slight dip in attitudes in year 8, and recovered in year 9. This school was 
one that had insignificant changes in test result at KS3, and no improvement for 
PLAS. In terms of our study, therefore, FH could be said to have failed in their initial 
aim, but as that aim had been abandoned until the following cohort, and a key teacher 
did not share the aim, we prefer to think instead about how those who taught these 
students in year 9 rescued some attitudes. 

Reflections 

When departments decide for themselves to undertake change, the processes are 
necessarily complex. The successes of these departments are due to collaboration, but 
we have shown by analysing their activity that this was of a special kind. It was not an 
imposed structural mechanism for change, nor was it generic; instead it was grounded 
in mathematics teaching and participants worked together equally and informally 
around planning through discussion of mathematical tasks. It took time for them to 
settle on new objects of activity, and to identify and use tools for change in their 
interactions. Due to various kinds of marginalisation full collaboration was not 
achieved, but mainly these teachers acted together and were willing to give up their 
own ideas for the collective work. Teachers participated professionally in the 
development and use of agreed teaching ideas and resources, and resisted outside 
pressures to various extents. Our analytical frame allowed us to describe aspects of 
their complex work and to observe what changed over the three years. 
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Initial teacher education providers and the anxiety spiral: results from the first 
two years of a longitudinal study 

Marcus Witt and Jill Mansergh 

School of Education, Bath Spa University  

There is considerable evidence that many primary teacher trainees come 
to their PGCE year with significant levels of anxiety about mathematics. 
Unless these anxieties are addressed, trainees may fail to remedy gaps in 
their subject knowledge, may fail to learn the required pedagogical skills 
and may pass their anxieties on to the children they teach. This suggests 
that these people are a significant link in the chain that perpetuates 
mathematical anxiety. The fact that trainees’ attitudes to mathematics 
change considerably during their PGCE year represents an opportunity for 
training providers to reduce anxiety levels. At Bath Spa we have been 
running a longitudinal study seeking to track the changing attitudes 
towards mathematics of our cohorts of trainee teachers and to explore the 
reasons for any changes through interviews with groups of them. The 
findings presented here provide a glimpse into the mathematical world of 
trainee teachers and reveals some interesting (and often surprising) factors 
which may help other providers of initial teacher education to reduce 
trainees’ anxiety about mathematics in the future.  

Literature 

There is considerable research evidence to suggest that people entering the teaching 
profession come with strong feelings about mathematics (Hogden and Askew 2007) 
often as a result of their experiences as learners of mathematics (Unglaub 1997). For 
primary teacher trainees, anxiety about mathematics is especially important as there is 
evidence to suggest that teachers pass their anxiety on to the children they teach 
(Burnett and Wichmann 1997, Fiore 1999). There is a weight of evidence to suggest 
that anxiety about mathematics disrupts cognition (e.g. Ashcraft 2002, Miller and 
Bichsel 2003), thus hampering trainees’ ability to learn the associated mathematical 
pedagogical skills. Trainees with less secure subject knowledge, a possible 
consequence of high anxiety levels, have been shown to plan and teach mathematics 
lessons less effectively (Goulding et al. 2002, Rowland 2000). Recently, Rowland et 
al. (2009) have explored in great depth the link between trainees’ subject knowledge 
and their ability to make appropriate pedagogic choices.  

However, a number of studies have shown that trainee teachers’ anxieties 
about mathematics can and do change during the period of training. Gresham (2007) 
suggests that trainees, like the majority of the population have a poorer understanding 
of concepts than they do of procedures and that this reliance on learned procedures 
without a clear conceptual understanding exacerbates anxiety. She designed a 
mathematics course that provided trainees with concrete experiences specifically 
intended to improve their conceptual knowledge and found marked reductions in 
trainees’ levels of anxiety. In follow-up questionnaires the majority of the trainees 
attributed their reduction in anxiety to the use of concrete manipulatives to reinforce 
concepts. However, it is not clear from the study whether these comments were made 
spontaneously, or were simply one of a list of possible responses. It is also unclear 
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from the study whether simply doing some mathematics as an adult and in an 
environment where motivation levels are high was the cause of the reductions in 
anxiety. There doesn’t appear to have been a control group in that study. Hawera 
(2004) also found marked reductions in trainee teachers’ anxiety about mathematics 
after an intensive 12 week course (48 hours) of mathematics. This course focused on 
trainees working together to in what she terms an ‘emotionally safe environment’. 
Again, it is unclear precisely what led to these trainees’ reduced anxiety levels. 
Several of the trainees talked about mathematics becoming more real. It could be that 
preparing to become a teacher and needing to understand the mathematics in order to 
be able to teach it, makes it more real and immediate, leading to greater engagement 
with the subject.  

Brown et al. (1999) also report significant changes in trainee teachers’ 
conceptions of and attitudes towards mathematics over the four years of their teacher 
training, without the issue being explicitly addressed in the training course. The study 
suggested that the change was gradual and related to the stages of their training. 
Trainee teachers began with highly affective accounts of their mathematical 
experiences at school. These were replaced as the trainees engaged with mathematics 
in a pedagogical context. A further shaping of the trainees’ attitudes occurred as they 
entered school and began were more influenced by the organisational concerns of 
their placement schools. This again suggests an engagement with the subject on a 
practical level in a way that reflects the trainees’ immediate concerns and interests.  

All the above accounts concern trainees on extended courses. Much less is 
known about the attitudes of trainee teachers on one-year PGCE courses, such as ours. 
These trainees spend time in schools from the beginning of the course and are 
concurrently receiving mathematical training in the university. The evidence reviewed 
above suggests that the PGCE year represents an opportunity for providers of initial 
teacher training to alleviate anxiety and address trainees’ negative attitudes about 
mathematics. However, time for these trainees is very limited and little is known at 
present about the factors during initial teacher training that might help alleviate 
anxiety levels in trainees and therefore the ways in which providers can make their 
provision more effective for such trainees.   

This study aimed to explore the anxiety of primary teacher trainees as they 
followed a one year PGCE course. The mathematics provision consisted of 16 
lectures of 45 minutes, 16 ‘pedagogy’ seminars of 90 minutes with a focus on how to 
teach primary mathematics and 7 largely optional 90 minute ‘subject knowledge’ 
seminars with a focus more on developing the trainees’ own understanding of 
mathematics. The distinction between ‘pedagogy’ and ‘subject knowledge’ was 
largely done for timetabling reasons and, as will be reported later, there were 
considerable overlaps between the two. This study was not an intervention; we were 
simply looking to explore whether our trainees’ anxiety about mathematics was 
affected by our provision and, if so, specifically which aspects of the PGCE year had 
an effect.  

Data collection 

Here we report a study that sought to answer a number of important questions: 
 

• Does participation in our one year PGCE course lead to changes in 
primary teacher trainees’ anxiety about mathematics? 

• Which elements of the PGCE mathematics provision lead to changes in 
trainees’ anxiety? 
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The study used questionnaires administered at three time points (September, 

December and April) to explore the changing attitudes towards mathematics of 
primary teacher trainees throughout their teacher training year. The questionnaires 
examined the trainees’ anxiety levels through a shortened, 30 point version of the 
Maths Anxiety Rating Scale (MARS, Suinn and Richardson 1972). The 
questionnaires also asked the trainees to rate themselves as mathematicians and as 
teachers of mathematics on a scale of 0-100. Data about the trainees’ highest 
mathematical qualification and their prior experiences of working in primary 
classrooms were also collected in the initial questionnaire.  

The factors influencing attitudinal changes were explored through interviews 
with small groups of trainees. The interviews were semi-structured in nature. There 
was a loose ‘agenda’ and the interviewers came with pre-prepared questions. 
However, if the group began to discuss an interesting issue, the interviewers let the 
discussion proceed without intervening.  

During the two years of the data collection, a total of 254 trainees had full sets 
of data. A larger number than this had partially completed data sets and these data are 
used where appropriate. For example, all the data collected at the first entry point is 
used in the analysis concerning trainees’ attitudes on entry to the course. During the 
first year of the study, a total of 18 trainees were interviewed in three groups. In the 
second year of the study, thanks to funding from ESCalate, we were able to extend the 
interviewing with a total of forty trainees were interviewed in eight groups of five.  

A conscious decision was made to collect both quantitative and qualitative 
data. Quantitative data were needed in order to build up a comprehensive picture of 
the attitudes of whole cohorts of trainees and to indicate whether any change in 
attitude was actually taking place during the PGCE year. The use of quantitative data 
enabled us to explore the magnitude of any changes and to see how anxiety about 
mathematics interacted with other attitudes about the subject. 

The use of the quantitative data was not enough in itself to offer us any real 
indication of why changes were occurring and which aspects of the PGCE 
mathematics provision were responsible. For this reason, the decision was made to 
conduct the group interviews. These interviews took place in April. An initial analysis 
of the quantitative data informed the framing of some of the interview questions and 
enabled us to target questions at areas highlighted in the quantitative data.  

Data Analysis 

The quantitative data was analysed using SPSS. Correlational analysis was used to 
explore the relationships between mathematics anxiety and the trainees’ ratings of 
themselves as mathematicians and as teachers of mathematics. The three data 
collection points allowed us to look at ways that these relationships changed over 
time.  

T-tests allowed us to compare different groups of trainees within the whole 
cohort. Specifically, we looked at the outcomes of those trainees who had reported 
very high levels of anxiety on entry to the course and compared them to the data for 
the rest of the cohort. Importantly, t-tests allowed us to look at the 2007/8 cohort and 
compare their scores with the 2008/9 cohort. We were also able to look at other sub-
groups within the main cohort. The PGCE course offers two ‘routes’. One is a 
‘general primary’ route that covers children between the ages of 5 and 11 and 
prepares trainees to teach in either Key Stage 1 or Key Stage 2. The other is an ‘early 
years’ route that covers children between the ages of 3 and 7 and involves placements 
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in Key Stage 1 and the Foundation Stage. The use of independent samples t-tests 
allowed us to explore differences between those trainees on the general primary route 
and those on the early years route.  

The analysis of the qualitative interview data involved an initial coding of the 
conversations to identify common themes. This initial coding was done by the two 
named researchers independently. We were interested to see whether there was any 
consistency in the trainees’ responses to questions about their initial levels of anxiety, 
the origins of this anxiety and the factors that had led to changes in their attitudes 
towards mathematics, or whether their responses were highly disparate.  Although the 
interviews were semi-structured, we did not begin with specific codes. The initial 
codes were largely descriptive as the trainees’ responses were collected and 
categorised. A second phase of analysis took place once the initial codes had been 
discussed and developed; more abstract, inferential codes were identified from the 
initial coding and used to refer back to the literature. From these inferential codes 
initial findings and recommendations were independently formulated and then 
compared. The findings reported below are the result of this coding process. The 
words of the trainees are illustrative of the themes and feelings that the coding process 
revealed.   

We were keenly aware of the potential problem that the interviewers who were 
asking questions about the PGCE course were the same people who were responsible 
for the design and delivery of the course. We tried to be as open as possible, to carry 
out the interviews in an atmosphere of genuine trust and information gathering and to 
be open to negative or critical comments. We always asked specifically for 
suggestions and comments about how we could improve the course and encouraged 
those trainees who had been less happy with the provision to come to the interviews 
so that they were able to voice their feelings. Despite this, we were aware that there 
may have been feelings and critical comments that the trainees wished to voice, but 
felt that they couldn’t.  

Findings 

The questionnaire data indicated that trainees come to their teacher training year with 
widely differing levels of anxiety about mathematics, with about 16% (59 out of 358 
trainees for whom initial data was available) showing anxiety levels greater that 1 
standard deviation above the mean. However, during the interviews, the majority of 
trainees indicated some level of anxiety about mathematics, almost always as a result 
of their own experiences as learners of mathematics. This was interesting, as all the 
trainees had a minimum of a GCSE Grade C, which would make them all relatively 
‘successful’ learners of mathematics. However, a large number of them were aware 
that they had learned mathematics in a highly instrumental way, knowing ‘tricks and 
recipes’ to get to the right answer, without any real understanding.  

‘It feels like I was taught to answer exam questions.’ 

Correlational analysis showed that trainees’ anxiety levels on entry were 
moderately related to their views of themselves as a mathematician (r=0.525, 
p<0.001) and moderately related to their assessment of themselves as a teacher of 
mathematics (r=0.536, p<0.001). Initially, their views of themselves as a mathematics 
teacher also showed a weak correlation with their level of classroom experience 
(r=0.184, p<0.01). However, as expected, this relationship became non-significant by 
the end of their PGCE year (r=0.042, p>0.05).  
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During the year there were significant reductions in trainees’ anxiety about 
mathematics (t=19.53, p<0.001), and increases in their assessments of themselves as 
mathematicians (t=17.86, p<0.001) and their assessments of themselves as teachers of 
mathematics (t=20.93, p<0.001). There were statistically significant reductions in 
anxiety levels between September and December and between December and April.  

The group of trainees who had levels of anxiety on entry more than one 
standard deviation greater than the mean were compared with the rest of the cohort. 
The analysis showed that their levels of anxiety fell significantly more than those of 
the rest of the cohort (t=2.15, p<0.05). However, this group of trainees were still 
significantly more anxious than their peers by the end of the course (t=5.83, p<0.001). 
This particularly anxious group also rated themselves more poorly as mathematicians 
and as teachers of mathematics than their less anxious peers at the beginning of the 
course. By the end of the course, there was still a statistically significant difference in 
terms of their rating of themselves as a mathematician (t=4.68, p<0.001), but no 
significant difference in terms of their ratings of themselves as teachers of 
mathematics (t=1.59, p>0.05). This suggests that these two concepts were very 
closely related at the beginning of the course, but became increasingly dissociated as 
the course progressed. 

The group interviews provided some interesting illumination of the statistical 
data. Trainees come to their PGCE year with ideas about mathematics and 
mathematics teaching. While most trainees who had a negative experience as learners 
of mathematics were determined not to repeat the mistakes of their own mathematics 
teachers, some found it hard to envisage teaching mathematics in ways that are not 
very similar to those they ‘suffered’ themselves.  

“Although you might have had a bad experience, it’s just making kids realise how 
accessible maths is; it shouldn’t have to be something you can’t look forward to.” 

 “I also wanted to change their views, because I’d had such a bad experience at 
primary school. I wanted to make it more fun, so I knew ways not to do it.” 

Less anxious trainees were content to be ‘taught’ some subject knowledge and 
simply to refresh mathematics that they had not used for some time. The more 
anxious trainees saw the opportunity to do some mathematics as extremely valuable. 
They needed more than simply to be reminded how to do something. This suggests 
that providers of initial teacher training need to do more than offer a ‘one-size-fits-all’ 
subject knowledge provision. The element of choice as to the level of subject 
knowledge provision offered seemed to be particularly important to the most anxious 
trainees. Their being grouped with other trainees who were less confident with 
mathematics enabled them to engage more with the teaching, to ask questions and to 
‘have a go’ without the feeling that their more confident peers were judging them.  

“I have this problem of, if someone says it to me I understand it, but then when I 
go away, like on a test and I have to do it for myself, or apply it to different 
numbers I’m like whooooaaaggggghhhhh.” 

“We were shown how to do that and I got it, but having the chance to actually do 
it, that really helped.” 

There was a complex relationship between the trainees’ level of anxiety, their 
subject knowledge and their understanding of pedagogy. Pedagogy sessions, although 
not designed specifically to address subject knowledge, were places where trainees 
made significant advances in their mathematical understanding. For many trainees, 
being shown ways of explaining a particular mathematical concept to primary school 
children acted as a trigger for making leaps in their own conceptual understanding, 
which in turn led to much greater confidence with their own mathematics.   
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“The way you understand something is definitely going to inform the way you 
feel you can deliver it to the children.” 

‘If you don’t understand something very well, you won’t necessarily be able to 
think of ways of teaching it that will be interesting to the child.’ 

‘Me and J have talked about when we’ve been to subject knowledge sessions, it’s 
like, I understand it now and you could teach it that way.’ 

These comments reinforce the importance of ‘deep subject knowledge for 
teaching’ (DCSF 2008). These trainees, without having been made explicitly aware of 
this term, were seeing clear links between their own understanding and their ability to 
find interesting and clear representations of mathematical ideas for their children.  

For a number of trainees, their initial anxiety was not expressed in terms of 
deficits in their own subject knowledge, but rather to the expectation of having to 
teach mathematics. They were aware that there were areas of mathematics that they 
could ‘do’, but were not able to teach. 

“The whole time, what was going through my head was, how on earth am I going 
to teach this because I can do it, but I don’t really know how or why. I became 
anxious about how I was going to teach it.” 

It could be that the ‘anxious’ trainees may have had different sources of 
anxiety. Some may have genuine anxiety at the thought of doing some mathematics 
and many seem to be aware of gaps in their own subject knowledge. These gaps may 
have been covered for the purposes of examinations by learning tricks and recipes, but 
were thrown into sharp relief as the prospect of teaching mathematics, albeit to 
primary school children, approached.  

Tutors were seen as important in reducing trainees’ anxiety. On a simple level, 
their approachability and patience allowed trainees to have a go at problems and ask 
questions without the feeling that tutors would be dismissive or impatient.  

“They all work to your level. If you don’t get something right, it doesn’t matter. 
They are willing to work through it with you until you do understand it.” 

More subtly, there was an emerging sense that the tutors themselves were 
acting as ambassadors for mathematics. The fact that tutors had a sense of humour 
and were approachable meant that the trainees’ perception of mathematics itself was 
changed. For example, the final lecture before Christmas, which was done as a 
pantomime and used to reinforce the key messages from the first part of the taught 
course through songs and sketches, was unexpectedly cited by a number of trainees as 
a moment of realisation that mathematics itself didn’t have to conform to the ‘dull and 
dry’ stereotype. A session on problem-solving, which involved acting out the 
problems to try and make the mathematics clearer, was also mentioned by several 
trainees as an important point in their relationship to mathematics.  

“Using physical examples of people standing on chairs and tables has proved that 
you can enjoy maths, it doesn’t have to be dull.” 

During the second year of the project, the subject knowledge sessions were 
changed from a more ‘didactic’ teaching focus to an opportunity for all the trainees, 
regardless of their prior mathematical achievements, to engage in sustained 
mathematical investigations. This was not an explicit ‘intervention’ for the purposes 
of the research project, rather a natural development of our course in response to the 
data collected from the first year of the project, in which a number of trainees 
commented on the importance and usefulness of being able to do some mathematics.  

There was an indication from the interview data that engaging in sustained 
mathematical investigations enabled trainees to uncover latent mathematical 
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understanding. Several of the trainees spoke of a ‘re-engagement with mathematics’ 
and of being able to draw a line under bad school experiences and start again. 

“For me it showed what I did know rather than highlighting what I didn’t know. I 
do know a reasonable amount of maths and I can work things out without being 
told. At that stage it was important for me to know that I did know some maths.” 

Several appreciated the pedagogical benefits of this and saw themselves as ‘re-
learning’ mathematics alongside the children they were teaching, with all its attendant 
benefits. The investigative sessions also served to highlight the importance of 
collaboration in mathematics, something that served to reduce the anxiety of some of 
the trainees.  

“It’s almost that we’re at the same point where I’m learning to enjoy maths as 
well and recognise that there aren’t always right and wrong answers and there are 
different ways of doing things.” 

Not all the trainees lost their anxiety about mathematics during the year. Those 
who remained anxious rationalised their anxiety by realising that it put them in a 
better position to understand those children who do not find mathematics an easy 
subject. The trialling of the investigative sessions also produced a dichotomy. The 
more anxious trainees from the first year of the study had been positive about the fact 
that they were in a group with other like-minded or similarly anxious trainees. The 
investigative sessions were run with all the trainees together, something that was 
appreciated by some of the trainees and a source of concern to others.  

Implications 

The findings that are described briefly above led to the following implications for our 
PGCE mathematics provision: 

Trainees on primary PGCE courses are not neutral about mathematics. They 
have clear views about and highly affective accounts of their experiences of learning 
mathematics. However, these experiences are not homogenous and providers of ITE 
might try to tailor their provision as closely as possible to the needs of their trainees.  

A minority of primary teacher trainees come to the PGCE with significant 
anxiety about mathematics. The source of this anxiety may well be a lack of subject 
knowledge as a result of poor experiences as learners of mathematics (Brown et al. 
1999). Some trainees may not have thought of themselves as anxious about 
mathematics in the past. Their lack of conceptual understanding may have been 
brought to the fore by the prospect of having to teach some mathematics. This 
suggests that a timetable-driven disconnection between ‘pedagogy’ and ‘subject 
knowledge’ is potentially not helpful.  

Tutors play an important role in the alleviation of trainees’ mathematics 
anxiety. Simple things like not putting undue pressure on trainees and being patient 
with difficulties in subject knowledge are important. More subtly and possibly more 
importantly, trainees seem to imbue the subject of mathematics with tutors’ own 
personalities. Tutors making sessions humourous and fun might dispel the dry and 
dusty image with which mathematics seems to be saddled.  

Trainees all seem to benefit from actually doing some mathematics rather than 
simply being told about it. For the trainees who came with high levels of anxiety, or 
who had had bad experiences as learners of mathematics, doing some mathematics 
and being successful at it enabled them to draw a line under their prior experiences 
and to re-engage with mathematics. This is in line with some of the studies cited 
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above (Hawera 2004, Gresham 2007), but was done within the tight time constraints 
of a one-year PGCE. 

The findings provide a rich insight into the thinking of primary teacher 
trainees as they grapple with mathematical subject knowledge, pedagogy and their 
own feelings during their training year. We hope that they represent a source of ideas 
for providers of initial teacher education to develop their courses so as to make better 
provision for anxious trainees and help to break the chain of mathematics anxiety.  
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Prospective elementary teachers’ beliefs about problem solving: A comparison of 
Cypriot and English undergraduates at the commencement of their courses 

Constantinos Xenofontos and Paul Andrews  

University of Cambridge 

The research reported in this paper draws on semi-structured interviews 
conducted with first-year undergraduate teacher education students, in the 
first weeks of their course at one university in Cyprus and one in England. 
The interviews, focused on students' conceptions of mathematical 
problems and problem solving yielded substantial, culturally-located 
variation in students' responses highlighting continuing inconsistencies in 
the operationalisation of this key concept around the world. Some 
implications for teacher education and further research in the problem 
solving field are discussed. 

Introduction  

Teachers’ beliefs have been the subject of extensive research, based on the 
assumption that what teachers believe is a significant determinant of what gets taught, 
how it gets taught and what gets learned in the classroom (Middleton 1999; Wilson 
and Cooney 2002). According to Aguirre and Speer (2000, 327), “being able to 
identify and describe the mechanisms underlying the influence of beliefs on 
instructional interactions would deepen and enrich our understanding of the teaching 
process”. Older and recent studies highlight the importance of examining, analysing 
and changing teachers’ beliefs in order to implement successfully mathematics 
curricula reforms (Ernest 1989; Handal and Herrington 2003), as without a challenge 
to teachers’ underlying beliefs, teachers may exploit new resources or modify practice 
inappropriately (Handal and Herrington 2003). Reform classrooms are characterised 
by an emphasis on problem solving (Peterson et al. 1989; Cady et al. 2007) and yet 
many international comparisons have fallen into the trap of assuming that things with 
the same name must have the same function in every culture (Grant, 2000). Our aim 
here is to address some cultural similarities and differences of prospective elementary 
teachers’ beliefs about mathematical problem solving in Cyprus and England.  

Teachers’ beliefs 

Beliefs have been defined as “conceptions, personal ideologies, world views and 
values that shape practice and orient knowledge” (Aguirre and Speer 2000, 328). 
Moreover, recent beliefs-related research, continuing to draw on Ernest's (1989) 
triadic model, has focused primarily on how teachers think about the nature of 
mathematics, its teaching and its learning. In addition, drawing upon Bandura’s early 
work in the field (Bandura 1977), research has highlighted the role of teacher self 
efficacy in general (Wolters and Daugherty 2007) and mathematics teaching self-
efficacy in particular (Charalambous et al 2008). Thus, we argue, Ernest's original 
model is appropriately augmented by such additional dimensions. 

Research has shown that the relation between beliefs and instructional 
practices is complex and cannot be described simply in terms of cause-and-effect. For 
example, while a number of studies have highlighted substantial disparities between 
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espoused and enacted beliefs (Thompson 1984; Beswick 2005; Raymond 1997), 
others have indicated that both beliefs and actions are contingent on the changing 
nature of the classroom context (Schoenfeld 2000; Skott 2001). Thus, acknowledging 
this problem, we have examined the mathematics-related beliefs of beginning 
undergraduate primary teacher education students to determine the extent to which 
they reflect similar, culturally embedded, perspectives to their peers. In this respect, 
results from comparative studies of serving teachers' mathematics related beliefs 
(Andrews and Hatch, 2000; Santagata 2004; Correa et al. 2008) and practices (Givvin 
et al. 2005; Andrews 2007a) indicate that culture plays a key determinant role in both 
their formation and manifestation. 

Curricula reforms, teachers’ beliefs and problem solving 

A number of papers have focused on the mathematics instruction-related problem-
solving beliefs of prospective teachers, including those of Verschaffel et al. (1997) in 
Flanders and Timmerman (2004) in the USA. In many such studies, prospective 
teachers’ cultural location remained, as a significant influencing variable, essentially 
unacknowledged. Moreover, a collective definition of problem-solving-oriented 
instruction has been assumed and, it is our contention, although this paper is not the 
place for a lengthy elaboration, that this assumption has little basis. For instance, as a 
consequence of the role of the National Council of Teachers of Mathematics (NCTM) 
in the framing of reform curricula in the US, much problem solving research has been 
undertaken in that country. The results of these studies have influenced curriculum 
development in many countries. Nevertheless, variation in definition and 
implementation can be seen, for example, in a 2007 special edition of Zentralblatt für 
Didaktik der Mathematik (ZDM) on problem solving around the world that includes 
articles highlighting the role of problem solving in the curricula of Israel, France, 
Italy, the UK, the Netherlands, Portugal, Germany, Hungary, China, Australia, 
Singapore, Japan, Brazil, Mexico, and the US respectively. In other words, despite US 
influence in the field, both problem solving as an activity and problem solving 
research continue to mean different things in different countries (Torner et al. 2007), 
to the extent that problem solving, according to where and by whom the term is used, 
can mean a goal, a process, a basic skill, a mode of inquiry, a form of mathematical 
thinking, and a teaching approach (Chapman 1997).  

While some single-national studies of teachers’ problem solving beliefs and 
practices have been undertaken in, for example, Australia (Anderson et al. 2004), few 
cross-national studies have been undertaken in this area. From the perspective of 
serving teachers' beliefs about mathematics, Andrews (2007b) concludes that English 
teachers tended to view mathematics as applicable number and the means by which 
learners are prepared for a world beyond school, while Hungarian teachers perceived 
mathematics as problem solving and independent of a world beyond school. Such 
findings seem to confirm that the teachers’ perspective is a neglected dimension in 
comparative studies of problem solving. 
 
Mathematical problems 
 
Despite the notion of mathematical problem having been used differently by different 
scholars, not all research in the field shows a lack of consensus. There is much 
agreement as to the nature of a problem. One key characteristic is that a problem lies 
with the person seeking the solution and not the problem itself. As Schoenfeld (1985, 
74) notes, “being a ‘problem’ is not a property inherent in a mathematical task. 
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Rather, it is a particular relationship between the individual and the task that makes 
the task a problem for that person”. That is, a problem for one person may not be for 
another (Borasi, 1986; Nesher et al. 2003). Such insights, and our interpretation of the 
work of these scholars, are helpful in framing our study, not least because they allude 
to three key criteria for defining the relationship between problem and problem 
solver. Firstly, problem solvers must have encountered a block and see no immediate 
and obvious way forward. Secondly, they must actively explore a variety of plausible 
approaches to the problem. Thirdly, they must accept that the search for a solution 
necessitates an engagement with the problem. With regards to the context of 
problems, Blum and Niss (1991) distinguish between the problems embedded “in 
some mathematical universe” (p. 38) and those related to real world. In other words, 
problems are seen to be either purely mathematical or applied. These perspectives 
frame the study we report below. 

Method 

As stated above, in this paper we report on the problem and problem solving beliefs of 
prospective elementary teachers from Cyprus and England. Participants were in the 
first weeks of an undergraduate teacher preparation programme at a one reputable, as 
measured by systemic measures of teacher education accountability, university in 
each country. Data were collected by means of semi-structured interviews at the 
beginning of the academic year 2008-2009. The interview questions regarded 
students’ definitions of mathematical problems and problem solving, their beliefs 
about pedagogy (teaching/learning), and their self-efficacy beliefs both as problem 
solvers and as potential teachers of problem solving. The comparative dimension is 
important in helping to identify and understand the ways in which culturally located 
experiences inform the construction of students’ beliefs. 

The Cypriot cohort comprised thirteen students (twelve female, one male), 
while the English comprised fourteen (thirteen female, one male). At the time of the 
interviews participants had received no problem solving-related university instruction. 
Therefore, they were seen as products of the school rather than university systems of 
their countries. Analyses were focused on students' meaning (see Kvale and 
Brinkmann 2009) and drew on both theory-driven and data-driven approaches 
(Boyatzis 1998; Kvale and Brinkmann 2009). In this paper, due to space limitations, 
we report on three themes identified by the data-driven analyses. These are students' 
perspectives on the nature of mathematical problems, the nature of mathematical 
problem solving, and the characteristics of effective problem solvers. The results are 
presented alphabetically by nationality, Cyprus then England. 

Cypriot students’ perspectives on mathematical problem 

Eleven students indicated that mathematical problems, usually embedded in text, 
should be clearly presented with adequate information and data so that solvers can 
easily attempt a solution. Panayiota’s comments were typical of others. She said that a 
mathematical problem comprises “mathematics related sentences, which include 
information, data and a desired outcome. We have to think about the data, to process 
them and get the answer”. Eight students commented on the significance of difficulty 
in defining a problem. For some as reflected in Sofia's comment, a problem by 
definition “has difficulty and unknown factors within it”. Others indicated that notions 
of difficulty lay, essentially, with the problem solver and not of itself, the problem. 
Such a perspective could be seen in Demetra's comment that “problems and their 



Joubert, M. and Andrews, P. (Eds.) Proceedings of the British Congress for Mathematics Education April 2010 

250 

difficulty are connected to certain age groups”, while Haroula added that “the 
criterion is school, if it is primary, gymnasium or lyceum. In primary school, 
problems are very easy, in gymnasium they are more complicated, and in lyceum you 
can find the hardest”. All thirteen students implied that mathematical problems are 
contextualised within a real-world framework. Christina's comment was not atypical. 
She said,  

at the first grade, problems were like “I have two apples, my grandmother gave 
me two more, how many do I have now?” Later on, at the sixth grade, problems 
were more complex, let’s say something about how many square metres of a wall 
surface could someone paint with so many litres of paint. In gymnasium, they 
might be something like “how much it cost to paint a surface”, which had to do 
with area and volume. In lyceum, they were more or less the same. 

Cypriot students’ perspectives on mathematical problem solving (MPS) 

Eleven students indicated, either directly or indirectly, that MPS is a process. Of the 
four who used the word process explicitly, Pantelis' comments were typical. He said 
that “mathematical problem solving is a process, the process towards what we are 
asked to find. It is the process during which you use the given data in order to find the 
answer to a problem”. Of the others, Demetra's comment was typical. She said that 
“mathematical problem solving is the use of the data in order to find what you are 
asked to”. A recurrent theme in these students' responses was the need to read the 
problem repeatedly. Panayiota’s comment was typical. She said,  

You have to read the problem two-three times, underline some key points, 
because you know, sometimes problems have unnecessary things in them, you 
have to find what is important, then start processing all these in your mind, read 
two-three more times, write down your data and what you want to find, do a shape 
if it’s needed and then do the algorithms. 

Cypriot students' perspectives on what makes a good problem solver 

Eight students suggested, along the lines of Martha's comments, that good problem 
solvers “have the skills for organising the given information quickly. They tidy up the 
data, the questions. Those who are not good don’t structure their work”. Sofia 
presented a typical response in respect of distinguishing the expert from the novice. 
She said that  

there is a big difference. Someone who is a good solver, as soon as he sees the 
problem, he has a clear picture in his mind about what has to be done, directly. 
Someone who is less good will have difficulties in finding which way to follow 
for solving the problem.  

Several students added that problem solving requires concentration, as seen in 
Demetra's comments that “solvers who concentrate when they encounter a 
mathematical problem perceive what has to be done quickly and manage to resolve 
it”.  

Eight students also suggested that, with practice, problem solving competence 
can be acquired. For example, Angeliki commented that a novice “could spend more 
time on practice... to develop his mathematical thinking, learn about different types of 
problems, and develop a clearer idea around mathematical problems”. However, the 
remaining five students indicated that being a good problem solver was natural. As 
Panayiota noted, it all “depends on the individual, biologically, I think some people 
are born with it; it’s their talent, either you have it or not”. 
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English students’ perspectives on mathematical problems 

In respect of their conception of mathematical problems, the English students 
presented a range of perspectives. Common to ten was an explicit invocation of 
number operations, as seen in Victoria's comment, that a problem was “anything, 
from adding, dividing, subtracting, timesing, or arrange them and then put together”. 
However, the context in which they described their perspectives varied. For four 
students problems were essentially mathematical in nature, as seen in Daniel’s slightly 
recollection of his school experiences. He said  

Pythagoras’ theorem, if you have the length of the hypotenuse and you need to 
work out,.. I can’t remember how it was. Like we’ve got sin, cosine and tangent 
and you need to work out the other two. Like you’ve got one of the angles and 
you need to work out another angle or length. That’s one which sticks in my head.  

Two students indicated that mathematical problems were related to the real 
world and every-day life, as in Laura’s comment that they had to do “with money, we 
did how, if apples cost 10p each, how much money do I need to buy six apples? 
Which is 60. Six times 10p”. However, the majority of the group, seven students, 
implied that problems could be construed as either mathematical or real world. 
Melanie's comment reflected those of others. She said that a “mathematical problem 
could mean lots of things. It can be a standard two plus two on a piece of paper or 
how much money I need to go for shopping. (…) Something that uses numbers to 
come up with ‘a’ answer, or a series of answers”.  

English students' perspectives on mathematical problem solving (MPS) 

Eleven students indicated that MPS is a structured process during which solvers apply 
prior knowledge in a structured step-by-step approach. Julia's response, typical of 
others. Suggested that MPS was “just basing what skills you know on trying to solve 
a problem in maths, so just applying the knowledge to structure it and work step by 
step to work out a problem”, while for Laura it meant having to “take it step by step 
and apply things you already know”. For some this step-by-step approach meant 
breaking down a problem into smaller pieces-tasks, working on each piece separately, 
and finally putting all the pieces together. Rachel, reflecting comments of others, said 
that “I break it down..., and then do a bit a time and then at the end I put them all 
together. I do that with most mathematical problems”. All students saw MPS as 
drawing on prior knowledge. Interestingly, Melanie, was the only student who used 
the word process explicitly. She commented on the  

the processes that you use to solve a problem. So, the way you think, the way you 
work out a problem, whether you need a resource to do it or whether you do it in 
your head. What steps you take to come to your conclusion. You need to 
understand the problem, what you’ve been asked to find out, cause lots of 
problems are in a context where you have to pull out the information you need, 
you need to understand the processes, you need to follow out the procedure and 
then you need to understand your answer. 

English students' perspectives on good problem solvers 

Thirteen students suggested that expert problem solvers can see through problems and 
apply the necessary mathematical knowledge and strategies quickly and efficiently. 
For example, Laura indicated that “an expert knows how to answer straight away, 
whereas someone who is not so good does think a long time about it and mainly have 
one option, whereas an expert might have lots of different ways to think about it”. 
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Expert solvers, she added, “already have the knowledge to work out what you need to 
do to solve the problems, whereas, otherwise they have to think what steps you need 
to take to get there”. Daniel summarised the nature of expertise thus, “I would say an 
expert is kind, they already have the formulas in their head so they can just work it out 
mentally”. 

The same thirteen students indicated that a prerequisite of expertise was 
practice. Lucy's comments were typical. She said 

I think is just practice than anything else... if you’re learning a language, you have 
to practice it, don’t you? To learn it. So, like if they have different, if they have 
theories, like an example of how to solve a problem, and if they practice and do it 
over and over again, like just memorise it and you know how to use that theory 
then I think that would get better. 

Discussion 

Space limits the extent of our discussion, although a number of important outcomes 
have emerged that merit comment. Despite some within-country differences, the 
major variation lay between countries. Firstly, all Cypriot students saw mathematical 
problems as tasks related to real world, while their English colleagues fell into three 
camps; those of the same opinion, those who saw mathematical problems as purely 
mathematical and a majority who acknowledged that problems could be purely 
mathematical or related to the real world, along the lines of Blum and Niss (1991). 
Nevertheless, the Cypriot students tended to talk in general, almost abstract, terms 
while the English in particularities. For example, in defining a problem many Cypriot 
students focused on the generic characteristics of a problem while the English tended 
to offer examples of problem types from which properties could be inferred by the 
reader. 

Similar issues emerged with respect to the nature of problem solving. Both 
groups of students attended, in some way, to process. The interesting difference lay in 
the sense that Cypriot students tended to view the process holistically – read, 
understand, collect data, analyse data and so on – while the English saw the process as 
one of simplification or reduction of the task to a series of small steps. Such 
differences are unlikely to be coincidental. Inevitably they will reflect the teaching 
these students received prior to going to university. Indeed, the English perspectives 
on the process of simplification find resonance with an earlier study of English and 
French curricular traditions (Jennings and Dunne 1996). Importantly, from the 
perspective of future teacher education programmes, these students are not 
mathematics majors but prospective generalist primary teachers. They are people 
who, one day, will teach young children mathematics. If problem solving is a key 
element of that country's curriculum, then English universities clearly need to 
understand the beliefs their undergraduates bring to their studies. The problems would 
appear less severe, at least as far as beliefs are concerned, for the Cypriot authorities. 

In terms of their beliefs about the characteristics of effective problem solvers 
there was evidence of genuine similarity across the two groups, with substantial 
proportions comparing the approaches of effective problem solvers – the ability to see 
straight through the problem to a solution strategy with no apparent difficulty - with 
those of novice or inefficient problem solvers. Moreover, there was also a consensus 
that such skills could be acquired through appropriate practice. Lastly, such findings 
highlight the plea made earlier that those involved in research on problem solving, at 
all levels, need to acknowledge not only the lack of definitional consensus but also the 
key role played by culture in the construction of participants' construal of 
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mathematical problem, problem solving and the characteristics of effective problem 
solvers. 
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